Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic address book for retinal cell types


The mammalian brain is assembled from thousands of neuronal cell types that are organized in distinct circuits to perform behaviorally relevant computations. Transgenic mouse lines with selectively marked cell types would facilitate our ability to dissect functional components of complex circuits. We carried out a screen for cell type–specific green fluorescent protein expression in the retina using BAC transgenic mice from the GENSAT project. Among others, we identified mouse lines in which the inhibitory cell types of the night vision and directional selective circuit were selectively labeled. We quantified the stratification patterns to predict potential synaptic connectivity between marked cells of different lines and found that some of the lines enabled targeted recordings and imaging of cell types from developing or mature retinal circuits. Our results suggest the potential use of a stratification-based screening approach for characterizing neuronal circuitry in other layered brain structures, such as the neocortex.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Retinal cell types and their stratification properties.
Figure 2: Cell type–specific GFP expression in the outer retina.
Figure 3: IPL stratum–specific GFP expression of amacrine cell types (some also have ganglion types labeled).
Figure 4: Identification of GENSAT mice with GFP-labeled amacrine cell types.
Figure 5: Identification of GFP-labeled ganglion cell types.
Figure 6: Stratification analysis of different cell types.


  1. Masland, R.H. Neuronal cell types. Curr. Biol. 14, R497–R500 (2004).

    CAS  Article  Google Scholar 

  2. Nelson, S.B., Sugino, K. & Hempel, C.M. The problem of neuronal cell types: a physiological genomics approach. Trends Neurosci. 29, 339–345 (2006).

    CAS  Google Scholar 

  3. Stevens, C.F. Neuronal diversity: too many cell types for comfort? Curr. Biol. 8, R708–R710 (1998).

    CAS  Article  Google Scholar 

  4. Famiglietti, E.V. Jr. 'Starburst' amacrine cells and cholinergic neurons: mirror-symmetric on and off amacrine cells of rabbit retina. Brain Res. 261, 138–144 (1983).

    Article  Google Scholar 

  5. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    CAS  Article  Google Scholar 

  6. Kim, D.S., Matsuda, T. & Cepko, C.L. A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J. Neurosci. 28, 7748–7764 (2008).

    CAS  Article  Google Scholar 

  7. Kim, D.S. et al. Identification of molecular markers of bipolar cells in the murine retina. J. Comp. Neurol. 507, 1795–1810 (2008).

    CAS  Article  Google Scholar 

  8. Masland, R.H. The fundamental plan of the retina. Nat. Neurosci. 4, 877–886 (2001).

    CAS  Article  Google Scholar 

  9. Wässle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757 (2004).

    Article  Google Scholar 

  10. Dowling, J. The Retina: An Approachable Part of the Brain (Belknap Press, Cambridge, Massachusetts, 1987).

    Google Scholar 

  11. Roska, B. & Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583–587 (2001).

    CAS  Article  Google Scholar 

  12. Haverkamp, S. & Wassle, H. Immunocytochemical analysis of the mouse retina. J. Comp. Neurol. 424, 1–23 (2000).

    CAS  Article  Google Scholar 

  13. Manookin, M.B., Beaudoin, D.L., Ernst, Z.R., Flagel, L.J. & Demb, J.B. Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J. Neurosci. 28, 4136–4150 (2008).

    CAS  Article  Google Scholar 

  14. Carter-Dawson, L.D. & LaVail, M.M. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 188, 245–262 (1979).

    CAS  Article  Google Scholar 

  15. Yoshida, K. et al. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771–780 (2001).

    CAS  Article  Google Scholar 

  16. Rice, D.S. & Curran, T. Disabled-1 is expressed in type AII amacrine cells in the mouse retina. J. Comp. Neurol. 424, 327–338 (2000).

    CAS  Article  Google Scholar 

  17. Balse, E. et al. Glycine receptors in a population of adult mammalian cones. J. Physiol. (Lond.) 571, 391–401 (2006).

    CAS  Article  Google Scholar 

  18. Huberman, A.D. et al. Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59, 425–438 (2008).

    CAS  Article  Google Scholar 

  19. Kim, I.J., Zhang, Y., Yamagata, M., Meister, M. & Sanes, J.R. Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478–482 (2008).

    CAS  Article  Google Scholar 

  20. Yonehara, K. et al. Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse. PLoS One 3, e1533 (2008).

    Article  Google Scholar 

  21. Schmidt, T.M., Taniguchi, K. & Kofuji, P. Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J. Neurophysiol. 100, 371–384 (2008).

    CAS  Article  Google Scholar 

  22. Jeon, C.J., Strettoi, E. & Masland, R.H. The major cell populations of the mouse retina. J. Neurosci. 18, 8936–8946 (1998).

    CAS  Article  Google Scholar 

  23. Fried, S.I., Munch, T.A. & Werblin, F.S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411–414 (2002).

    CAS  Article  Google Scholar 

  24. Morgan, J.L., Dhingra, A., Vardi, N. & Wong, R.O. Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nat. Neurosci. 9, 85–92 (2006).

    CAS  Article  Google Scholar 

  25. Hattar, S., Liao, H.W., Takao, M., Berson, D.M. & Yau, K.W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    CAS  Article  Google Scholar 

  26. McGuire, B.A., Stevens, J.K. & Sterling, P. Microcircuitry of beta ganglion cells in cat retina. J. Neurosci. 6, 907–918 (1986).

    CAS  Article  Google Scholar 

  27. Freed, M.A. & Sterling, P. The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. J. Neurosci. 8, 2303–2320 (1988).

    CAS  Article  Google Scholar 

  28. Tomomura, M., Rice, D.S., Morgan, J.I. & Yuzaki, M. Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein. Eur. J. Neurosci. 14, 57–63 (2001).

    CAS  Article  Google Scholar 

  29. Rotolo, T., Smallwood, P.M., Williams, J. & Nathans, J. Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology. PLoS One 3, e4099 (2008).

    Article  Google Scholar 

  30. Walsh, M.K. & Quigley, H.A. In vivo time-lapse fluorescence imaging of individual retinal ganglion cells in mice. J. Neurosci. Methods 169, 214–221 (2008).

    Article  Google Scholar 

  31. Arlotta, P. et al. Neuronal subtype–specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    CAS  Article  Google Scholar 

  32. Trimarchi, J.M. et al. Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling. J. Comp. Neurol. 502, 1047–1065 (2007).

    CAS  Article  Google Scholar 

  33. Lagali, P.S. et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci. 11, 667–675 (2008).

    CAS  Article  Google Scholar 

Download references


We thank M. Ciminelli, P. Dyer, S. Djaffer, J. Hall and Y. Shimada for technical assistance, and F. Rijli, P. S. Lagali and K. Farrow for comments on the manuscript. This study was supported by Friedrich Miescher Institute funds, a US Office of Naval Research Naval International Cooperative Opportunities in Science and Technology Program grant, a Marie Curie Excellence grant, a National Center for Competence in Research in Genetics grant and a European Union HEALTH-F2-223156 grant to B.R., and by National Institute of Neurological Disorders and Stroke contracts N01NS02331 and HHSN271200723701C to N.H. N.H. is an Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations



Mice were produced at Rockefeller University by N.H. and K.D.P., and eyes were analyzed at the Friedrich Miescher Institute by S.S, B.G.S and B.R. The web-based retina database was developed by N.D.

Corresponding author

Correspondence to Botond Roska.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–10 and Supplementary Introduction (PDF 3778 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siegert, S., Scherf, B., Del Punta, K. et al. Genetic address book for retinal cell types. Nat Neurosci 12, 1197–1204 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing