Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration

Abstract

The pleiotropic actions of neuromodulators on pre- and postsynaptic targets make disentangling the mechanisms underlying regulation of synaptic transmission challenging. In the striatum, acetylcholine modulates glutamate release via activation of muscarinic receptors (mAchRs), although the consequences for postsynaptic signaling are unclear. Using two-photon microscopy and glutamate uncaging to examine individual synapses in the rat striatum, we found that glutamatergic afferents have a high degree of multivesicular release (MVR) in the absence of postsynaptic receptor saturation. We found that mAchR activation decreased both the probability of release and the concentration of glutamate in the synaptic cleft. The corresponding decrease in synaptic potency reduced the duration of synaptic potentials and limited temporal summation of afferent inputs. These findings reveal a mechanism by which a combination of basal MVR and low receptor saturation allow the presynaptic actions of a neuromodulator to control the engagement of postsynaptic nonlinearities and regulate synaptic integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of synaptic responses and passive properties of MSNs by mAchRs.
Figure 2: Optical quantal analysis of synaptic potency and failure rate.
Figure 3: mAchR activation increases synaptic failures and decreases NMDAR-mediated synaptic potency.
Figure 4: Activation of mAchRs does not modulate AMPAR-mediated currents.
Figure 5: Activation of mAchRs does not modulate NMDAR-mediated currents or Ca2+ transients.
Figure 6: Direct inhibition of vesicular release by blockade of presynaptic N-type Ca2+ channels reduces synaptic potency.
Figure 7: AMPARs and NMDARs are not saturated under basal release conditions.
Figure 8: Changes in synaptic potency regulate temporal integration of striatal glutamatergic synapses.

Similar content being viewed by others

References

  1. Shepherd, G.M. The Synaptic Organization of the Brain (Oxford University Press, Oxford, 2004).

    Book  Google Scholar 

  2. Berton, O. & Nestler, E.J. New approaches to antidepressant drug discovery: beyond monoamines. Nat. Rev. Neurosci. 7, 137–151 (2006).

    Article  CAS  Google Scholar 

  3. Iversen, S.D. & Iversen, L.L. Dopamine: 50 years in perspective. Trends Neurosci. 30, 188–193 (2007).

    Article  CAS  Google Scholar 

  4. Pisani, A., Bernardi, G., Ding, J. & Surmeier, D.J. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci. 30, 545–553 (2007).

    Article  CAS  Google Scholar 

  5. Lucas-Meunier, E., Fossier, P., Baux, G. & Amar, M. Cholinergic modulation of the cortical neuronal network. Pflugers Arch. 446, 17–29 (2003).

    Article  CAS  Google Scholar 

  6. Bolam, J.P., Hanley, J.J., Booth, P.A. & Bevan, M.D. Synaptic organization of the basal ganglia. J. Anat. 196, 527–542 (2000).

    Article  CAS  Google Scholar 

  7. DeLong, M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    Article  CAS  Google Scholar 

  8. Graybiel, A.M. The basal ganglia. Curr. Biol. 10, R509–R511 (2000).

    Article  CAS  Google Scholar 

  9. Kaneko, S. et al. Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science 289, 633–637 (2000).

    Article  CAS  Google Scholar 

  10. Kitabatake, Y., Hikida, T., Watanabe, D., Pastan, I. & Nakanishi, S. Impairment of reward-related learning by cholinergic cell ablation in the striatum. Proc. Natl. Acad. Sci. USA 100, 7965–7970 (2003).

    Article  CAS  Google Scholar 

  11. Apicella, P. Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci. 30, 299–306 (2007).

    Article  CAS  Google Scholar 

  12. Calabresi, P., Centonze, D., Gubellini, P., Pisani, A. & Bernardi, G. Acetylcholine-mediated modulation of striatal function. Trends Neurosci. 23, 120–126 (2000).

    Article  CAS  Google Scholar 

  13. Kemp, J.M. & Powell, T.P. The termination of fibers from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Phil. Trans. R. Soc. Lond. B 262, 429–439 (1971).

    Article  CAS  Google Scholar 

  14. Wilson, C.J. & Groves, P.M. Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. J. Comp. Neurol. 194, 599–615 (1980).

    Article  CAS  Google Scholar 

  15. Barral, J., Galarraga, E. & Bargas, J. Muscarinic presynaptic inhibition of neostriatal glutamatergic afferents is mediated by Q-type Ca2+ channels. Brain Res. Bull. 49, 285–289 (1999).

    Article  CAS  Google Scholar 

  16. Malenka, R.C. & Kocsis, J.D. Presynaptic actions of carbachol and adenosine on corticostriatal synaptic transmission studied in vitro. J. Neurosci. 8, 3750–3756 (1988).

    Article  CAS  Google Scholar 

  17. Pakhotin, P. & Bracci, E. Cholinergic interneurons control the excitatory input to the striatum. J. Neurosci. 27, 391–400 (2007).

    Article  CAS  Google Scholar 

  18. Calabresi, P., Centonze, D., Gubellini, P., Pisani, A. & Bernardi, G. Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. Eur. J. Neurosci. 10, 3020–3023 (1998).

    Article  CAS  Google Scholar 

  19. Sugita, S., Uchimura, N., Jiang, Z.G. & North, R.A. Distinct muscarinic receptors inhibit release of gamma-aminobutyric acid and excitatory amino acids in mammalian brain. Proc. Natl. Acad. Sci. USA 88, 2608–2611 (1991).

    Article  CAS  Google Scholar 

  20. Aznavour, N., Mechawar, N., Watkins, K.C. & Descarries, L. Fine structural features of the acetylcholine innervation in the developing neostriatum of rat. J. Comp. Neurol. 460, 280–291 (2003).

    Article  CAS  Google Scholar 

  21. Izzo, P.N. & Bolam, J.P. Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J. Comp. Neurol. 269, 219–234 (1988).

    Article  CAS  Google Scholar 

  22. Galarraga, E. et al. Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J. Neurosci. 19, 3629–3638 (1999).

    Article  CAS  Google Scholar 

  23. Hernández-Echeagaray, E., Galarraga, E. & Bargas, J. 3-Alpha-chloro-imperialine, a potent blocker of cholinergic presynaptic modulation of glutamatergic afferents in the rat neostriatum. Neuropharmacology 37, 1493–1502 (1998).

    Article  Google Scholar 

  24. Calabresi, P., Centonze, D., Gubellini, P., Pisani, A. & Bernardi, G. Endogenous ACh enhances striatal NMDA responses via M1-like muscarinic receptors and PKC activation. Eur. J. Neurosci. 10, 2887–2895 (1998).

    Article  CAS  Google Scholar 

  25. Howe, A.R. & Surmeier, D.J. Muscarinic receptors modulate N-, P- and L-type Ca2+ currents in rat striatal neurons through parallel pathways. J. Neurosci. 15, 458–469 (1995).

    Article  CAS  Google Scholar 

  26. Perez-Rosello, T. et al. Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. J. Neurophysiol. 93, 2507–2519 (2005).

    Article  CAS  Google Scholar 

  27. Shen, W., Hamilton, S.E., Nathanson, N.M. & Surmeier, D.J. Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. J. Neurosci. 25, 7449–7458 (2005).

    Article  CAS  Google Scholar 

  28. Shen, W. et al. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat. Neurosci. 10, 1458–1466 (2007).

    Article  CAS  Google Scholar 

  29. Carter, A.G., Soler-Llavina, G.J. & Sabatini, B.L. Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J. Neurosci. 27, 8967–8977 (2007).

    Article  CAS  Google Scholar 

  30. Liu, J.C. et al. Calcium modulates dopamine potentiation of N-methyl-D-aspartate responses: electrophysiological and imaging evidence. J. Neurosci. Res. 76, 315–322 (2004).

    Article  CAS  Google Scholar 

  31. Oertner, T.G. Sabatini, Nimchinsky & Svoboda. Facilitation at single synapses probed with optical quantal analysis. Nat. Neurosci. 5, 657–664 (2002).

    Article  CAS  Google Scholar 

  32. Stevens, C.F. & Wang, Y. Facilitation and depression at single central synapses. Neuron 14, 795–802 (1995).

    Article  CAS  Google Scholar 

  33. Bloodgood, B.L. & Sabatini, B.L. Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53, 249–260 (2007).

    Article  CAS  Google Scholar 

  34. Busetto, G., Higley, M.J. & Sabatini, B.L. Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons. J. Physiol. (Lond.) 586, 1519–1527 (2008).

    Article  CAS  Google Scholar 

  35. Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    Article  CAS  Google Scholar 

  36. Hasselmo, M.E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715 (2006).

    Article  CAS  Google Scholar 

  37. Jones, B.E. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog. Brain Res. 145, 157–169 (2004).

    Article  CAS  Google Scholar 

  38. McCormick, D.A. Actions of acetylcholine in the cerebral cortex and thalamus and implications for function. Prog. Brain Res. 98, 303–308 (1993).

    Article  CAS  Google Scholar 

  39. Akins, P.T., Surmeier, D.J. & Kitai, S.T. Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons. Nature 344, 240–242 (1990).

    Article  CAS  Google Scholar 

  40. Olson, P.A. et al. G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J. Neurosci. 25, 1050–1062 (2005).

    Article  CAS  Google Scholar 

  41. Nimchinsky, E.A., Yasuda, R., Oertner, T.G. & Svoboda, K. The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines. J. Neurosci. 24, 2054–2064 (2004).

    Article  CAS  Google Scholar 

  42. Foster, K.A., Crowley, J.J. & Regehr, W.G. The influence of multivesicular release and postsynaptic receptor saturation on transmission at granule cell to Purkinje cell synapses. J. Neurosci. 25, 11655–11665 (2005).

    Article  CAS  Google Scholar 

  43. Christie, J.M. & Jahr, C.E. Multivesicular release at Schaffer collateral–CA1 hippocampal synapses. J. Neurosci. 26, 210–216 (2006).

    Article  CAS  Google Scholar 

  44. Tong, G. & Jahr, C.E. Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron 12, 51–59 (1994).

    Article  CAS  Google Scholar 

  45. Singer, J.H., Lassova, L., Vardi, N. & Diamond, J.S. Coordinated multivesicular release at a mammalian ribbon synapse. Nat. Neurosci. 7, 826–833 (2004).

    Article  CAS  Google Scholar 

  46. Foster, K.A., Kreitzer, A.C. & Regehr, W.G. Interaction of postsynaptic receptor saturation with presynaptic mechanisms produces a reliable synapse. Neuron 36, 1115–1126 (2002).

    Article  CAS  Google Scholar 

  47. Wadiche, J.I. & Jahr, C.E. Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32, 301–313 (2001).

    Article  CAS  Google Scholar 

  48. Wilson, C.J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996).

    Article  CAS  Google Scholar 

  49. Adermark, L. & Lovinger, D.M. Frequency-dependent inversion of net striatal output by endocannabinoid-dependent plasticity at different synaptic inputs. J. Neurosci. 29, 1375–1380 (2009).

    Article  CAS  Google Scholar 

  50. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser-scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Sabatini laboratory, A. Carter, W. Regehr and J. Cardin for helpful comments during the preparation of this manuscript. This work was funded by a Parkinson's Disease Foundation Postdoctoral Fellowship (M.J.H.), a Quan Predoctoral Fellowship and National Institute of Neurological Disorders and Stroke predoctoral National Research Service Award (1 F31 NS049655-01, G.J.S.-L.) and grants from the McKnight Foundation and National Institute of Neurological Disorders and Stroke (NS046579, B.L.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.J.H., G.J.S.-L. and B.L.S. designed the experiments. M.J.H. and G.J.S.-L. carried out the experiments and analyzed the data. M.J.H. and B.L.S. wrote the manuscript.

Corresponding author

Correspondence to Bernardo L Sabatini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higley, M., Soler-Llavina, G. & Sabatini, B. Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration. Nat Neurosci 12, 1121–1128 (2009). https://doi.org/10.1038/nn.2368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing