Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elimination of climbing fiber instructive signals during motor learning

Abstract

The climbing fiber input to the cerebellum from the inferior olive is thought to act as a teacher whose activity controls the induction of motor learning. We designed training conditions that did not elicit instructive signals in the climbing fibers, but nevertheless induced robust and consistent motor learning in the vestibulo-ocular reflex of rhesus monkeys. Our results indicate that instructive signals in the climbing fibers are not necessary for cerebellum-dependent learning. Instead, instructive signals carried by either the climbing fibers or Purkinje cell simple spikes may be sufficient to induce motor learning, with additive effects occurring when both instructive signals are present during training.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VOR circuit and Marr-Albus-Ito hypothesis for VOR learning.
Figure 2: Climbing fiber responses to standard and novel training stimuli.
Figure 3: Purkinje cell simple spike responses during training.
Figure 4: In the absence of instructive signals in the climbing fibers, learning was correlated with simple spike responses during training.
Figure 5: Purkinje cell simple spike and climbing fiber signals together predict learned behavioral changes.

Similar content being viewed by others

References

  1. Albus, J. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).

    Article  Google Scholar 

  2. Marr, D. A theory of cerebellar cortex. J. Physiol. (Lond.) 202, 437–470 (1969).

    Article  CAS  Google Scholar 

  3. Ito, M. Neural design of the cerebellar motor control system. Brain Res. 40, 81–84 (1972).

    Article  CAS  Google Scholar 

  4. Simpson, J.I. & Alley, K.E. Visual climbing fiber input to rabbit vestibulo-cerebellum: a source of direction-specific information. Brain Res. 82, 302–308 (1974).

    Article  CAS  Google Scholar 

  5. Gilbert, P.F. & Thach, W.T. Purkinje cell activity during motor learning. Brain Res. 128, 309–328 (1977).

    Article  CAS  Google Scholar 

  6. Ito, M. & Kano, M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33, 253–258 (1982).

    Article  CAS  Google Scholar 

  7. Shutoh, F. et al. Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 139, 767–777 (2006).

    Article  CAS  Google Scholar 

  8. Boyden, E.S., Katoh, A. & Raymond, J.L. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu. Rev. Neurosci. 27, 581–609 (2004).

    Article  CAS  Google Scholar 

  9. Boyden, E.S. et al. Selective engagement of plasticity mechanisms for motor memory storage. Neuron 51, 823–834 (2006).

    Article  CAS  Google Scholar 

  10. De Zeeuw, C.I. & Yeo, C.H. Time and tide in cerebellar memory formation. Curr. Opin. Neurobiol. 15, 667–674 (2005).

    Article  CAS  Google Scholar 

  11. Lisberger, S.G. & Sejnowski, T.J. Motor learning in a recurrent network model based on the vestibulo-ocular reflex. Nature 360, 159–161 (1992).

    Article  CAS  Google Scholar 

  12. Jörntell, H. & Ekerot, C.F. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34, 797–806 (2002).

    Article  Google Scholar 

  13. Lisberger, S.G. Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning. J. Neurophysiol. 72, 974–998 (1994).

    Article  CAS  Google Scholar 

  14. Medina, J.F. et al. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr. Opin. Neurobiol. 10, 717–724 (2000).

    Article  CAS  Google Scholar 

  15. Hirata, Y. & Highstein, S.M. Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. J. Neurophysiol. 85, 2267–2288 (2001).

    Article  CAS  Google Scholar 

  16. Jirenhed, D.A., Bengtsson, F. & Hesslow, G. Acquisition, extinction and reacquisition of a cerebellar cortical memory trace. J. Neurosci. 27, 2493–2502 (2007).

    Article  CAS  Google Scholar 

  17. Coesmans, M. et al. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44, 691–700 (2004).

    Article  CAS  Google Scholar 

  18. Lev-Ram, V. et al. Reversing cerebellar long-term depression. Proc. Natl. Acad. Sci. USA 100, 15989–15993 (2003).

    Article  CAS  Google Scholar 

  19. Rancillac, A. & Crepel, F. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. J. Physiol. (Lond.) 554, 707–720 (2004).

    Article  CAS  Google Scholar 

  20. Shinoda, Y. et al. The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. Prog. Brain Res. 124, 173–186 (2000).

    Article  CAS  Google Scholar 

  21. Evans, G.J. Synaptic signaling in cerebellar plasticity. Biol. Cell 99, 363–378 (2007).

    Article  CAS  Google Scholar 

  22. Mittmann, W. & Hausser, M. Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. J. Neurosci. 27, 5559–5570 (2007).

    Article  CAS  Google Scholar 

  23. Miles, F.A. & Lisberger, S.G. Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu. Rev. Neurosci. 4, 273–299 (1981).

    Article  CAS  Google Scholar 

  24. Haddad, G.M., Demer, J.L. & Robinson, D.A. The effect of lesions of the dorsal cap of the inferior olive on the vestibulo-ocular and optokinetic systems of the cat. Brain Res. 185, 265–275 (1980).

    Article  CAS  Google Scholar 

  25. Mintz, M. et al. Unilateral inferior olive NMDA lesion leads to unilateral deficit in acquisition and retention of eyelid classical conditioning. Behav. Neural Biol. 61, 218–224 (1994).

    Article  CAS  Google Scholar 

  26. Zbarska, S., Bloedel, J.R. & Bracha, V. Cerebellar dysfunction explains the extinction-like abolition of conditioned eyeblinks after NBQX injections in the inferior olive. J. Neurosci. 28, 10–20 (2008).

    Article  CAS  Google Scholar 

  27. Colin, F., Manil, J. & Desclin, J.C. The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers. Brain Res. 187, 3–27 (1980).

    Article  CAS  Google Scholar 

  28. Rambold, H. et al. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J. Neurophysiol. 87, 912–924 (2002).

    Article  CAS  Google Scholar 

  29. Robinson, D.A. Adaptive gain control of vestibuloocular reflex by the cerebellum. J. Neurophysiol. 39, 954–969 (1976).

    Article  CAS  Google Scholar 

  30. Torte, M.P. et al. Anatomical segregation of different adaptative processes within the vestibulocerebellum of the cat. Exp. Brain Res. 99, 441–454 (1994).

    Article  CAS  Google Scholar 

  31. Ito, M., Jastreboff, P.J. & Miyashita, Y. Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Exp. Brain Res. 45, 233–242 (1982).

    CAS  PubMed  Google Scholar 

  32. Cohen, H. et al. Habituation and adaptation of the vestibuloocular reflex: a model of differential control by the vestibulocerebellum. Exp. Brain Res. 90, 526–538 (1992).

    Article  CAS  Google Scholar 

  33. Miles, F.A. et al. Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J. Neurophysiol. 43, 1437–1476 (1980).

    Article  CAS  Google Scholar 

  34. Lisberger, S.G. & Fuchs, A.F. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J. Neurophysiol. 41, 733–763 (1978).

    Article  CAS  Google Scholar 

  35. Eccles, J.C., Llinas, R. & Sasaki, K. The excitatory synaptic action of climbing fibres on the purinje cells of the cerebellum. J. Physiol. (Lond.) 182, 268–296 (1966).

    Article  CAS  Google Scholar 

  36. Raymond, J.L. & Lisberger, S.G. Neural learning rules for the vestibulo-ocular reflex. J. Neurosci. 18, 9112–9129 (1998).

    Article  CAS  Google Scholar 

  37. Ito, M., Nisimaru, N. & Yamamoto, M. Specific patterns of neuronal connexions involved in the control of the rabbit's vestibulo-ocular reflexes by the cerebellar flocculus. J. Physiol. (Lond.) 265, 833–854 (1977).

    Article  CAS  Google Scholar 

  38. Maekawa, K. & Takeda, T. Origin of descending afferents to the rostral part of dorsal cap of inferior olive which transfers contralateral optic activities to the flocculus. A horseradish peroxidase study. Brain Res. 172, 393–405 (1979).

    Article  CAS  Google Scholar 

  39. Ilg, U.J. & Hoffmann, K.P. Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur. J. Neurosci. 8, 92–105 (1996).

    Article  CAS  Google Scholar 

  40. Mustari, M.J. & Fuchs, A.F. Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. J. Neurophysiol. 64, 77–90 (1990).

    Article  CAS  Google Scholar 

  41. Ohyama, T. et al. Learning-induced plasticity in deep cerebellar nucleus. J. Neurosci. 26, 12656–12663 (2006).

    Article  CAS  Google Scholar 

  42. Lisberger, S.G., Pavelko, T.A. & Broussard, D.M. Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons. J. Neurophysiol. 72, 928–953 (1994).

    Article  CAS  Google Scholar 

  43. Han, V.Z. et al. Synaptic plasticity and calcium signaling in Purkinje cells of the central cerebellar lobes of mormyrid fish. J. Neurosci. 27, 13499–13512 (2007).

    Article  CAS  Google Scholar 

  44. Hartell, N.A. Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron 16, 601–610 (1996).

    Article  CAS  Google Scholar 

  45. Medina, J.F., Garcia, K.S. & Mauk, M.D. A mechanism for savings in the cerebellum. J. Neurosci. 21, 4081–4089 (2001).

    Article  CAS  Google Scholar 

  46. Raymond, J.L. & Lisberger, S.G. Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex. J. Neurosci. 16, 7791–7802 (1996).

    Article  CAS  Google Scholar 

  47. Robinson, D.A. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10, 137–145 (1963).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Louderback and R. Levine for technical assistance, and E. Knudsen, D. Angelaki, M. Goldman, D. Fisher, I. Witten, E. Mukamel, A. Katoh, R. Kimpo, B. Nguyen-Vu and S.-L. Shin for their comments on the manuscript. This work was supported by the US National Institutes of Health (grants R01 DC004154 to J.L.R. and F31 DC008078 to M.C.K.), a Howard Hughes Medical Institute fellowship for Medical Students and the Stanford Medical Scientist Training Program to M.C.K. and a Stanford Graduate Fellowship to C.C.G.

Author information

Authors and Affiliations

Authors

Contributions

M.C.K. and C.C.G. performed the experiments and analyzed data. M.C.K., C.C.G. and J.L.R. wrote the manuscript. J.L.R. provided guidance throughout the project.

Corresponding author

Correspondence to Jennifer L Raymond.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1177 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, M., Guo, C. & Raymond, J. Elimination of climbing fiber instructive signals during motor learning. Nat Neurosci 12, 1171–1179 (2009). https://doi.org/10.1038/nn.2366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing