Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans

Abstract

The molecular mechanism by which neurites are selected for elimination or incorporation into the mature circuit during developmental pruning remains unknown. The trophic theory postulates that local cues provided by target or surrounding cells act to inhibit neurite elimination. However, no widely conserved factor mediating this trophic function has been identified. We found that the developmental survival of specific neurites in Caenorhabditis elegans largely depends on detection of the morphogen Wnt by the Ror kinase CAM-1, which is a transmembrane tyrosine kinase with a Frizzled domain. Mutations in Wnt genes or in cam-1 enhanced neurite elimination, whereas overexpression of cam-1 inhibited neurite elimination in a Wnt-dependent manner. Moreover, mutations in these genes counteracted the effect of a mutation in mbr-1, which encodes a transcription factor that promotes neurite elimination. These results reveal the trophic role of an atypical Wnt pathway and reinforce the classical model of developmental pruning.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The Ror kinase CAM-1 and the transcription factor MBR-1 have opposite roles in developmental neurite pruning.
Figure 2: CAM-1 functions cell-autonomously to inhibit neurite elimination.
Figure 3: Wnt is required for CAM-1–mediated inhibition of neurite elimination.
Figure 4: Wnt is provided nonautonomously by nearby neurons.
Figure 5: Developmental neurite pruning occurs in multiple neuronal subclasses, as revealed by behavioral analyses of the mbr-1 mutant.
Figure 6: Wnt, CAM-1 and MBR-1 also function in developmental neurite pruning of neurons involved in olfactory processing.

References

  1. Low, L.K. & Cheng, H.J. Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1531–1544 (2006).

    Article  CAS  Google Scholar 

  2. Lichtman, J.W. & Colman, H. Synapse elimination and indelible memory. Neuron 25, 269–278 (2000).

    Article  CAS  Google Scholar 

  3. Raff, M.C., Whitmore, A.V. & Finn, J.T. Axonal self-destruction and neurodegeneration. Science 296, 868–871 (2002).

    Article  CAS  Google Scholar 

  4. Nave, K.A. & Trapp, B.D. Axon-glial signaling and the glial support of axon function. Annu. Rev. Neurosci. 31, 535–561 (2008).

    Article  CAS  Google Scholar 

  5. Luo, L. & O'Leary, D.D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).

    Article  CAS  Google Scholar 

  6. Kage, E. et al. MBR-1, a novel helix-turn-helix transcription factor, is required for pruning excessive neurites in Caenorhabditis elegans. Curr. Biol. 15, 1554–1559 (2005).

    Article  CAS  Google Scholar 

  7. Koga, M., Take-uchi, M., Tameishi, T. & Ohshima, Y. Control of DAF-7 TGF-β expression and neuronal process development by a receptor tyrosine kinase KIN-8 in Caenorhabditis elegans. Development 126, 5387–5398 (1999).

    CAS  PubMed  Google Scholar 

  8. Forrester, W.C., Dell, M., Perens, E. & Garriga, G.A. C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature 400, 881–885 (1999).

    Article  CAS  Google Scholar 

  9. Oishi, I. et al. Spatio-temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes Cells 4, 41–56 (1999).

    Article  CAS  Google Scholar 

  10. Francis, M.M. et al. The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C. elegans neuromuscular junction. Neuron 46, 581–594 (2005).

    Article  CAS  Google Scholar 

  11. Kim, C. & Forrester, W.C. Functional analysis of the domains of the C. elegans Ror receptor tyrosine kinase CAM-1. Dev. Biol. 264, 376–390 (2003).

    Article  CAS  Google Scholar 

  12. Aurelio, O., Hall, D.H. & Hobert, O. Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization. Science 295, 686–690 (2002).

    Article  CAS  Google Scholar 

  13. Hikasa, H., Shibata, M., Hiratani, I. & Taira, M. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Development 129, 5227–5239 (2002).

    CAS  PubMed  Google Scholar 

  14. Oishi, I. et al. The receptor tyrosine kinase Ror2 is involved in noncanonical Wnt5a/JNK signalling pathway. Genes Cells 8, 645–654 (2003).

    Article  CAS  Google Scholar 

  15. Mikels, A.J. & Nusse, R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 4, e115 (2006).

    Article  Google Scholar 

  16. Green, J.L., Inoue, T. & Sternberg, P.W. The C. elegans ROR receptor tyrosine kinase, CAM-1, nonautonomously inhibits the Wnt pathway. Development 134, 4053–4062 (2007).

    Article  CAS  Google Scholar 

  17. Schambony, A. & Wedlich, D. Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev. Cell 12, 779–792 (2007).

    Article  CAS  Google Scholar 

  18. Green, J.L., Inoue, T. & Sternberg, P.W. Opposing Wnt pathways orient cell polarity during organogenesis. Cell 134, 646–656 (2008).

    Article  CAS  Google Scholar 

  19. Eisenmann, D.M. Wnt signaling. WormBook <http://www.wormbook.org/chapters/www_wntsignaling/wntsignaling.html> (2005).

  20. Shioi, G. et al. Mutations affecting nerve attachment of Caenorhabditis elegans. Genetics 157, 1611–1622 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaudet, J. & Mango, S.E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295, 821–825 (2002).

    Article  CAS  Google Scholar 

  22. Yang, P.T. et al. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev. Cell 14, 140–147 (2008).

    Article  CAS  Google Scholar 

  23. Hirotsu, T. & Iino, Y. Neural circuit–dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway. Genes Cells 10, 517–530 (2005).

    Article  CAS  Google Scholar 

  24. Freyd, G., Kim, S.K. & Horvitz, H.R. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature 344, 876–879 (1990).

    Article  CAS  Google Scholar 

  25. Barnes, T.M. & Hekimi, S. The Caenorhabditis elegans avermectin resistance and anesthetic response gene unc-9 encodes a member of a protein family implicated in electrical coupling of excitable cells. J. Neurochem. 69, 2251–2260 (1997).

    Article  CAS  Google Scholar 

  26. Chuang, C.F., Vanhoven, M.K., Fetter, R.D., Verselis, V.K. & Bargmann, C.I. An innexin-dependent cell network establishes left-right neuronal asymmetry in C. elegans. Cell 129, 787–799 (2007).

    Article  CAS  Google Scholar 

  27. Nguyen, Q.T., Parsadanian, A.S., Snider, W.D. & Lichtman, J.W. Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle. Science 279, 1725–1729 (1998).

    Article  CAS  Google Scholar 

  28. Woolley, A.G., Sheard, P.W. & Duxson, M.J. Neurotrophin-3 null mutant mice display a postnatal motor neuropathy. Eur. J. Neurosci. 21, 2100–2110 (2005).

    Article  Google Scholar 

  29. Jaaro, H., Beck, G., Conticello, S.G. & Fainzilber, M. Evolving better brains: a need for neurotrophins? Trends Neurosci. 24, 79–85 (2001).

    Article  CAS  Google Scholar 

  30. Chen, J., Park, C.S. & Tang, S.J. Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J. Biol. Chem. 281, 11910–11916 (2006).

    Article  CAS  Google Scholar 

  31. Wayman, G.A. et al. Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50, 897–909 (2006).

    Article  CAS  Google Scholar 

  32. Ataman, B. et al. Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron 57, 705–718 (2008).

    Article  CAS  Google Scholar 

  33. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  34. Lee, C.Y., Cooksey, B.A. & Baehrecke, E.H. Steroid regulation of midgut cell death during Drosophila development. Dev. Biol. 250, 101–111 (2002).

    Article  CAS  Google Scholar 

  35. Daish, T.J., Cakouros, D. & Kumar, S. Distinct promoter regions regulate spatial and temporal expression of the Drosophila caspase dronc. Cell Death Differ. 10, 1348–1356 (2003).

    Article  CAS  Google Scholar 

  36. Williams, D.W., Kondo, S., Krzyzanowska, A., Hiromi, Y. & Truman, J.W. Local caspase activity directs engulfment of dendrites during pruning. Nat. Neurosci. 9, 1234–1236 (2006).

    Article  CAS  Google Scholar 

  37. Kuo, C.T., Zhu, S., Younger, S., Jan, L.Y. & Jan, Y.N. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51, 283–290 (2006).

    Article  CAS  Google Scholar 

  38. Montcouquiol, M., Crenshaw, E.B. III & Kelley, M.W. Noncanonical Wnt signaling and neural polarity. Annu. Rev. Neurosci. 29, 363–386 (2006).

    Article  CAS  Google Scholar 

  39. Ferri, A., Sanes, J.R., Coleman, M.P., Cunningham, J.M. & Kato, A.C. Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease. Curr. Biol. 13, 669–673 (2003).

    Article  CAS  Google Scholar 

  40. Sajadi, A., Schneider, B.L. & Aebischer, P. Wlds-mediated protection of dopaminergic fibers in an animal model of Parkinson disease. Curr. Biol. 14, 326–330 (2004).

    Article  CAS  Google Scholar 

  41. Hobert, O., D'Alberti, T., Liu, Y. & Ruvkun, G. Control of neural development and function in a thermoregulatory network by the LIM homeobox gene lin-11. J. Neurosci. 18, 2084–2096 (1998).

    Article  CAS  Google Scholar 

  42. Chou, J.H., Bargmann, C.I. & Sengupta, P. The Caenorhabditis elegans odr-2 gene encodes a novel Ly-6–related protein required for olfaction. Genetics 157, 211–224 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Caenorhabditis Genetics Center funded by the US National Institutes of Health National Center for Research Resources for nematode strains; M. Tomioka, K. Yamada and M. Matsuki for constructs and technical advice; A. Fire for vectors; C. Bargmann, A. Kuhara and I. Mori for information on constructs; O. Hobert for sharing unpublished results on neurite pruning; and E. Matsuzaka for technical assistance. This work was supported by the Program for Promotion of Basic Research Activities for Innovative Bioscience. Y.H. was the recipient of a Grant-in-Aid for Japan Society for the Promotion of Science Fellows.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. designed and Y.H., R.I. and H.K. conducted the experiments on anatomical studies. Y.H., T.H. and E.K.-N. designed and conducted the experiments on behavioral studies. Y.H. wrote the manuscript. T.I., Y.I. and T.K. supervised the project.

Corresponding author

Correspondence to Yu Hayashi.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 1240 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hayashi, Y., Hirotsu, T., Iwata, R. et al. A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans. Nat Neurosci 12, 981–987 (2009). https://doi.org/10.1038/nn.2347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing