Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Twin-spot MARCM to reveal the developmental origin and identity of neurons

Abstract

A comprehensive understanding of the brain requires the analysis of individual neurons. We used twin-spot mosaic analysis with repressible cell markers (twin-spot MARCM) to trace cell lineages at high resolution by independently labeling paired sister clones. We determined patterns of neurogenesis and the influences of lineage on neuron-type specification. Notably, neural progenitors were able to yield intermediate precursors that create one, two or more neurons. Furthermore, neurons acquired stereotyped projections according to their temporal position in various brain sublineages. Twin-spot MARCM also permitted birth dating of mutant clones, enabling us to detect a single temporal fate that required chinmo in a sublineage of six Drosophila central complex neurons. In sum, twin-spot MARCM can reveal the developmental origins of neurons and the mechanisms that underlie cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of mosaic techniques and the twin-spot MARCM design.
Figure 2: Mushroom body lineage analysis with twin-spot MARCM.
Figure 3: Proliferation patterns of Drosophila larval CNS lineages using twin-spot MARCM.
Figure 4: Comprehensive analysis of individual neurons in a central complex sublineage through twin-spot MARCM.

Similar content being viewed by others

References

  1. Hartenstein, V. & Campos-Ortega, J.A. Early neurogenesis in wildtype Drosophila melanogaster. Dev. Genes. Evol. 193, 308–325 (1984).

    Google Scholar 

  2. Truman, J.W. & Bate, M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol. 125, 145–157 (1988).

    Article  CAS  Google Scholar 

  3. Ito, K. & Hotta, Y. Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev. Biol. 149, 134–148 (1992).

    Article  CAS  Google Scholar 

  4. Urbach, R., Schnabel, R. & Technau, G.M. The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development 130, 3589–3606 (2003).

    Article  CAS  Google Scholar 

  5. Lee, T., Lee, A. & Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065–4076 (1999).

    CAS  Google Scholar 

  6. Jefferis, G.S., Marin, E.C., Stocker, R.F. & Luo, L. Target neuron prespecification in the olfactory map of Drosophila. Nature 414, 204–208 (2001).

    Article  CAS  Google Scholar 

  7. Lai, S.-L., Awasaki, T., Ito, K. & Lee, T. Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development 135, 2883–2893 (2008).

    Article  CAS  Google Scholar 

  8. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  Google Scholar 

  9. Noctor, S.C., Martinez-Cerdeno, V. & Kriegstein, A.R. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J. Comp. Neurol. 508, 28–44 (2008).

    Article  Google Scholar 

  10. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  11. Zhu, S., Chiang, A.-S. & Lee, T. Development of the Drosophila mushroom bodies: elaboration, remodeling and spatial organization of dendrites in the calyx. Development 130, 2603–2610 (2003).

    Article  CAS  Google Scholar 

  12. Zhu, S. et al. Gradients of the Drosophila Chinmo BTB–zinc finger protein govern neuronal temporal identity. Cell 127, 409–422 (2006).

    Article  CAS  Google Scholar 

  13. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  14. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  Google Scholar 

  15. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  Google Scholar 

  16. Hutvágner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    Article  Google Scholar 

  17. Shi, L., Yu, H.H., Yang, J.S. & Lee, T. Specific Drosophila Dscam juxtamembrane variants control dendritic elaboration and axonal arborization. J. Neurosci. 27, 6723–6728 (2007).

    Article  CAS  Google Scholar 

  18. Yu, H.-H., Yang, J.S., Wang, J., Huang, Y. & Lee, T. Endodoamin diversity in the Drosophila Dscam and its roles in neuronal morphogenesis. J. Neurosci. 29, 1904–1914 (2009).

    Article  CAS  Google Scholar 

  19. Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761–771 (1997).

    CAS  PubMed  Google Scholar 

  20. Bowman, S.K. et al. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev. Cell 14, 535–546 (2008).

    Article  CAS  Google Scholar 

  21. Bello, B.C., Izergina, N., Caussinus, E. & Reichert, H. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural. Dev. 3, 5 (2008).

    Article  Google Scholar 

  22. Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

    Article  CAS  Google Scholar 

  23. Giraldez, A.J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  Google Scholar 

  24. Lai, S.L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703–709 (2006).

    Article  CAS  Google Scholar 

  25. Awasaki, T., Lai, S.-L., Ito, K. & Lee, T. Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J. Neurosci. 28, 13742–13753 (2008).

    Article  CAS  Google Scholar 

  26. Ito, K. & Awasaki, T. Clonal unit architecture of the adult fly brain. Adv. Exp. Med. Biol. 628, 137–158 (2008).

    Article  CAS  Google Scholar 

  27. Truman, J.W., Schuppe, H., Shepherd, D. & Williams, D.W. Developmental architecture of adult-specific lineages in the ventral CNS of Drosophila. Development 131, 5167–5184 (2004).

    Article  CAS  Google Scholar 

  28. Chen, C.H. et al. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316, 597–600 (2007).

    Article  CAS  Google Scholar 

  29. Connolly, J.B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107 (1996).

    Article  CAS  Google Scholar 

  30. McGuire, S.E., Le, P.T. & Davis, R.L. The role of Drosophila mushroom body signaling in olfactory memory. Science 293, 1330–1333 (2001).

    Article  CAS  Google Scholar 

  31. Lin, D.M. & Goodman, C.S. Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523 (1994).

    Article  CAS  Google Scholar 

  32. Golic, K.G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.T. Zugates for critical reading of the manuscript and members of the Lee laboratory for helpful discussions through the entire project. This work was supported by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzumin Lee.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, HH., Chen, CH., Shi, L. et al. Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12, 947–953 (2009). https://doi.org/10.1038/nn.2345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing