Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity

Abstract

Many synapses in the mature CNS are wrapped by a dense extracellular matrix (ECM). Using single-particle tracking and fluorescence recovery after photobleaching, we found that this net-like ECM formed surface compartments on rat primary neurons that acted as lateral diffusion barriers for AMPA-type glutamate receptors. Enzymatic removal of the ECM increased extrasynaptic receptor diffusion and the exchange of synaptic AMPA receptors. Whole-cell patch-clamp recording revealed an increased paired-pulse ratio as a functional consequence of ECM removal. These results suggest that the surface compartments formed by the ECM hinder lateral diffusion of AMPA receptors and may therefore modulate short-term synaptic plasticity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Development of ECM structures in cultured hippocampal neurons.
Figure 2: Mobility of GluR1-containing AMPA receptors labeled with antibodies to GluR1 coupled to quantum dots outside and inside of ECM structures.
Figure 3: FRAP experiments reveal different mobilities of AMPAR before and after ECM removal.
Figure 4: ECM-based surface compartments restrict AMPAR diffusion.
Figure 5: ECM removal enhances exchange between synaptic and extrasynaptic AMPARs without altering intrasynaptic mobility.
Figure 6: Synaptic short-term plasticity is altered after ECM removal.

References

  1. 1

    Celio, M.R., Spreafico, R., De Biasi, S. & Vitellaro-Zuccarello, L. Perineuronal nets: past and present. Trends Neurosci. 21, 510–515 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Celio, M.R. & Blumcke, I. Perineuronal nets—a specialized form of extracellular matrix in the adult nervous system. Brain Res. Brain Res. Rev. 19, 128–145 (1994).

    CAS  Article  Google Scholar 

  3. 3

    John, N. et al. Brevican-containing perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures. Mol. Cell. Neurosci. 31, 774–784 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Köppe, G., Bruckner, G., Brauer, K., Hartig, W. & Bigl, V. Developmental patterns of proteoglycan-containing extracellular matrix in perineuronal nets and neuropil of the postnatal rat brain. Cell Tissue Res. 288, 33–41 (1997).

    Article  Google Scholar 

  5. 5

    Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Triller, A. & Choquet, D. Synaptic structure and diffusion dynamics of synaptic receptors. Biol. Cell 95, 465–476 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Meier, J., Vannier, C., Serge, A., Triller, A. & Choquet, D. Fast and reversible trapping of surface glycine receptors by gephyrin. Nat. Neurosci. 4, 253–260 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Thomas, P., Mortensen, M., Hosie, A.M. & Smart, T.G. Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nat. Neurosci. 8, 889–897 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat. Rev. Neurosci. 4, 251–265 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Kusumi, A., Ike, H., Nakada, C., Murase, K. & Fujiwara, T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol. 17, 3–21 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Newpher, T.M. & Ehlers, M.D. Glutamate receptor dynamics in dendritic microdomains. Neuron 58, 472–497 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Groc, L. et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat. Neurosci. 7, 695–696 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Dityatev, A. et al. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev. Neurobiol. 67, 570–588 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Rauch, U. Extracellular matrix components associated with remodeling processes in brain. Cell. Mol. Life Sci. 61, 2031–2045 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Yamaguchi, Y. Lecticans: organizers of the brain extracellular matrix. Cell. Mol. Life Sci. 57, 276–289 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Brückner, G., Kacza, J. & Grosche, J. Perineuronal nets characterized by vital labelling, confocal and electron microscopy in organotypic slice cultures of rat parietal cortex and hippocampus. J. Mol. Histol. 35, 115–122 (2004).

    Article  Google Scholar 

  18. 18

    Hedstrom, K.L. et al. Neurofascin assembles a specialized extracellular matrix at the axon initial segment. J. Cell Biol. 178, 875–886 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    CAS  Google Scholar 

  20. 20

    Ehlers, M.D., Heine, M., Groc, L., Lee, M.C. & Choquet, D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54, 447–460 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Groc, L. et al. Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. J. Neurosci. 27, 12433–12437 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).

    CAS  Article  Google Scholar 

  23. 23

    Ashby, M.C., Maier, S.R., Nishimune, A. & Henley, J.M. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J. Neurosci. 26, 7046–7055 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Falk, J., Thoumine, O., Dequidt, C., Choquet, D. & Faivre-Sarrailh, C. NrCAM coupling to the cytoskeleton depends on multiple protein domains and partitioning into lipid rafts. Mol. Biol. Cell 15, 4695–4709 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Thoumine, O. et al. Weak effect of membrane diffusion on the rate of receptor accumulation at adhesive contacts. Biophys. J. 89, L40–L42 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Groc, L. et al. NMDA receptor surface mobility depends on NR2A–2B subunits. Proc. Natl. Acad. Sci. USA 103, 18769–18774 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Cottrell, J.R., Dube, G.R., Egles, C. & Liu, G. Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J. Neurophysiol. 84, 1573–1587 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Harms, K.J., Tovar, K.R. & Craig, A.M. Synapse-specific regulation of AMPA receptor subunit composition by activity. J. Neurosci. 25, 6379–6388 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Park, M. et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52, 817–830 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Adesnik, H., Nicoll, R.A. & England, P.M. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48, 977–985 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Lu, J. et al. Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to Homer. Neuron 55, 874–889 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat. Neurosci. 7, 244–253 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Borgdorff, A.J. & Choquet, D. Regulation of AMPA receptor lateral movements. Nature 417, 649–653 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Brückner, G. et al. Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8, 183–200 (1993).

    Article  Google Scholar 

  36. 36

    Sylantyev, S. et al. Electric fields due to synaptic currents sharpen excitatory transmission. Science 319, 1845–1849 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Savtchenko, L.P., Korogod, S.M. & Rusakov, D.A. Electrodiffusion of synaptic receptors: a mechanism to modify synaptic efficacy? Synapse 35, 26–38 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Volkmer, H., Zacharias, U., Norenberg, U. & Rathjen, F.G. Dissection of complex molecular interactions of neurofascin with axonin-1, F11 and tenascin-R, which promote attachment and neurite formation of tectal cells. J. Cell Biol. 142, 1083–1093 (1998).

    CAS  Article  Google Scholar 

  39. 39

    Carulli, D. et al. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J. Comp. Neurol. 494, 559–577 (2006).

    CAS  Article  Google Scholar 

  40. 40

    Lochner, J.E. et al. Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. J. Neurobiol. 66, 564–577 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Frischknecht, R., Fejtova, A., Viesti, M., Stephan, A. & Sonderegger, P. Activity-induced synaptic capture and exocytosis of the neuronal serine protease neurotrypsin. J. Neurosci. 28, 1568–1579 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Nakamura, H. et al. Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J. Biol. Chem. 275, 38885–38890 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Oray, S., Majewska, A. & Sur, M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 44, 1021–1030 (2004).

    CAS  Article  Google Scholar 

  44. 44

    Berardi, N., Pizzorusso, T. & Maffei, L. Extracellular matrix and visual cortical plasticity: freeing the synapse. Neuron 44, 905–908 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Banker, G. & Goslin, K. Developments in neuronal cell culture. Nature 336, 185–186 (1988).

    CAS  Article  Google Scholar 

  46. 46

    Mammen, A.L., Huganir, R.L. & O'Brien, R.J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358 (1997).

    CAS  Article  Google Scholar 

  47. 47

    Racine, V. et al. Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells. J. Microsc. 225, 214–228 (2007).

    Article  Google Scholar 

  48. 48

    Ashby, M.C., Ibaraki, K. & Henley, J.M. It's green outside: tracking cell surface proteins with pH-sensitive GFP. Trends Neurosci. 27, 257–261 (2004).

    CAS  Article  Google Scholar 

  49. 49

    Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. & Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Poujol and P. Legros for help with video microscopy, C. Breillat, B. Tessier and D. Bouchet for expert technical assistence, J. Falk for NrCAM and GPI-GFP constructs, M. Carta and P. Opazo for support with the slice cultures, O. Kobler for help with three-dimensional image processing, and A. Triller and A. Fejtová for very helpful discussions. This work was supported by grants from the Centre National de la Recherche Scientifique, the Conseil Régional d'Aquitaine, the Ministère de la Recherche, the Fondation pour la Recherche Médicale, the European Commission (CT-2005-005320), the Deutsche Forschungsgemeinschaft (GU230/5-2/5-3), a Max Planck award from the A.v. Humboldt Foundation and the Max Planck Society. During part of the work, R.F. was supported by a fellowship from the Swiss National Fonds.

Author information

Affiliations

Authors

Contributions

R.F. and M.H. designed and performed all experiments and assembled a first draft of the manuscript. D.P. performed outside-out patch experiments. C.I.S., D.C. and E.D.G. formulated the working hypothesis and wrote the corresponding grant applications. All authors contributed steadily to the discussion of the actual experiments and to the writing of the manuscript.

Corresponding authors

Correspondence to Daniel Choquet or Eckart D Gundelfinger.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 6305 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frischknecht, R., Heine, M., Perrais, D. et al. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12, 897–904 (2009). https://doi.org/10.1038/nn.2338

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing