Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing

This article has been updated

Abstract

Speech and language are considered uniquely human abilities: animals have communication systems, but they do not match human linguistic skills in terms of recursive structure and combinatorial power. Yet, in evolution, spoken language must have emerged from neural mechanisms at least partially available in animals. In this paper, we will demonstrate how our understanding of speech perception, one important facet of language, has profited from findings and theory in nonhuman primate studies. Chief among these are physiological and anatomical studies showing that primate auditory cortex, across species, shows patterns of hierarchical structure, topographic mapping and streams of functional processing. We will identify roles for different cortical areas in the perceptual processing of speech and review functional imaging work in humans that bears on our understanding of how the brain decodes and monitors speech. A new model connects structures in the temporal, frontal and parietal lobes linking speech perception and production.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Dual processing scheme for 'what' and 'where', proposed for nonhuman primates on anatomical and physiological grounds.
Figure 2: Communication calls consist of elementary features, such as band-pass noise bursts or frequency-modulated (FM) sweeps.
Figure 3: Multiple parallel input modules advocated by some as an alternative to the dual-stream model.
Figure 4: Invariance in the perception of auditory objects (including vocalizations and speech) against transpositions in frequency, time or both.
Figure 5: Dual auditory processing scheme of the human brain and the role of internal models in sensory systems.

Change history

  • 17 June 2009

    In the version of this article initially published, refs. 39-46 in the reference list were misnumbered. The reference given as ref. 46 should be ref. 39; those given as refs. 39-45 should be refs. 40-46, respectively. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Broca, P. Remarques sur le siège de la faculté du language articulé: suivies d'une observation d'aphémie (perte de la parole). Bull. Soc. Anat. Paris 6, 330–357 (1861).

    Google Scholar 

  2. Wernicke, C. Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis (Cohn & Weigert, Breslau, Germany, 1874).

    Google Scholar 

  3. Wise, R.J. Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br. Med. Bull. 65, 95–119 (2003).

    Article  PubMed  Google Scholar 

  4. Rauschecker, J.P. Cortical processing of complex sounds. Curr. Opin. Neurobiol. 8, 516–521 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Rauschecker, J.P. & Tian, B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl. Acad. Sci. USA 97, 11800–11806 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mishkin, M., Ungerleider, L.G. & Macko, K.A. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414–417 (1983).

    Article  Google Scholar 

  7. Kaas, J.H. & Hackett, T.A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. USA 97, 11793–11799 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hackett, T.A., Stepniewska, I. & Kaas, J.H. Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J. Comp. Neurol. 394, 475–495 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Romanski, L.M. et al. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat. Neurosci. 2, 1131–1136 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goldman-Rakic, P.S. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Phil. Trans. R. Soc. Lond. B 351, 1445–1453 (1996).

    Article  CAS  Google Scholar 

  11. Petrides, M. Lateral prefrontal cortex: architectonic and functional organization. Phil. Trans. R. Soc. Lond. B 360, 781–795 (2005).

    Article  Google Scholar 

  12. Tian, B., Reser, D., Durham, A., Kustov, A. & Rauschecker, J.P. Functional specialization in rhesus monkey auditory cortex. Science 292, 290–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Schreiner, C.E. & Winer, J.A. Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56, 356–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Recanzone, G.H. & Sutter, M.L. The biological basis of audition. Annu. Rev. Psychol. 59, 119–142 (2008).

    Article  PubMed  Google Scholar 

  15. Recanzone, G.H., Guard, D.C., Phan, M.L. & Su, T.K. Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. J. Neurophysiol. 83, 2723–2739 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Lewis, J.W. & Van Essen, D.C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Rauschecker, J.P., Tian, B. & Hauser, M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111–114 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Poremba, A. et al. Functional mapping of the primate auditory system. Science 299, 568–572 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Tian, B. & Rauschecker, J.P. Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. J. Neurophysiol. 92, 2993–3013 (2004).

    Article  PubMed  Google Scholar 

  20. Rauschecker, J.P. & Tian, B. Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. J. Neurophysiol. 91, 2578–2589 (2004).

    Article  PubMed  Google Scholar 

  21. Bendor, D. & Wang, X. The neuronal representation of pitch in primate auditory cortex. Nature 436, 1161–1165 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petkov, C.I., Kayser, C., Augath, M. & Logothetis, N.K. Functional imaging reveals numerous fields in the monkey auditory cortex. PLoS Biol. 4, e215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petkov, C.I. et al. A voice region in the monkey brain. Nat. Neurosci. 11, 367–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Kikuchi, Y. et al. Voice region connectivity in the monkey assessed with microstimulation and functional imaging. Soc. Neurosci. Abstr. 850.2 (2008).

  25. Lomber, S.G. & Malhotra, S. Double dissociation of 'what' and 'where' processing in auditory cortex. Nat. Neurosci. 11, 609–616 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Goodale, M.A. & Milner, A.D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Fuster, J. The Prefrontal Cortex (Academic, London, 2008).

    Book  Google Scholar 

  28. Scott, S.K. & Johnsrude, I.S. The neuroanatomical and functional organization of speech perception. Trends Neurosci. 26, 100–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Scott, S.K. Auditory processing–speech, space and auditory objects. Curr. Opin. Neurobiol. 15, 197–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Rauschecker, J.P. Cortical processing of auditory space: pathways and plasticity. in Spatial Processing in Navigation, Imagery and Perception (Mast, F. & Jäncke, L., eds.) 389–410 (Springer, New York, 2007).

    Chapter  Google Scholar 

  31. Kaas, J.H. & Hackett, T.A. 'What' and 'where' processing in auditory cortex. Nat. Neurosci. 2, 1045–1047 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Binder, J.R. et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb. Cortex 10, 512–528 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Wessinger, C.M. et al. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J. Cogn. Neurosci. 13, 1–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Formisano, E. et al. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40, 859–869 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Chevillet, M., Riesenhuber, M. & Rauschecker, J.P. Functional localization of the auditory “what” stream hierarchy. Soc. Neurosci. Abstr. 174.9 (2007).

  36. Zatorre, R.J., Bouffard, M. & Belin, P. Sensitivity to auditory object features in human temporal neocortex. J. Neurosci. 24, 3637–3642 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patterson, R.D., Uppenkamp, S., Johnsrude, I.S. & Griffiths, T.D. The processing of temporal pitch and melody information in auditory cortex. Neuron 36, 767–776 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Obleser, J. et al. Vowel sound extraction in anterior superior temporal cortex. Hum. Brain Mapp. 27, 562–571 (2006).

    Article  PubMed  Google Scholar 

  39. Belin, P. & Zatorre, R.J. Adaptation to speaker's voice in right anterior temporal lobe. Neuroreport 14, 2105–2109 (2003).

    Article  PubMed  Google Scholar 

  40. Kumar, S., Stephan, K.E., Warren, J.D., Friston, K.J. & Griffiths, T.D. Hierarchical processing of auditory objects in humans. PLOS Comput. Biol. 3, e100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shamma, S. On the emergence and awareness of auditory objects. PLoS Biol. 6, e155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scott, S.K., Blank, C.C., Rosen, S. & Wise, R.J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123, 2400–2406 (2000).

    Article  PubMed  Google Scholar 

  43. Narain, C. et al. Defining a left-lateralized response specific to intelligible speech using fMRI. Cereb. Cortex 13, 1362–1368 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Scott, S.K., Rosen, S., Lang, H. & Wise, R.J. Neural correlates of intelligibility in speech investigated with noise vocoded speech–a positron emission tomography study. J. Acoust. Soc. Am. 120, 1075–1083 (2006).

    Article  PubMed  Google Scholar 

  45. Liebenthal, E., Binder, J.R., Spitzer, S.M., Possing, E.T. & Medler, D.A. Neural substrates of phonemic perception. Cereb. Cortex 15, 1621–1631 (2005).

    Article  PubMed  Google Scholar 

  46. Obleser, J., Zimmermann, J., Van Meter, J. & Rauschecker, J.P. Multiple stages of auditory speech perception reflected in event-related FMRI. Cereb. Cortex 17, 2251–2257 (2007).

    Article  PubMed  Google Scholar 

  47. Warren, J.D., Scott, S.K., Price, C.J. & Griffiths, T.D. Human brain mechanisms for the early analysis of voices. Neuroimage 31, 1389–1397 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Shannon, R.V., Zeng, F.G., Kamath, V., Wygonski, J. & Ekelid, M. Speech recognition with primarily temporal cues. Science 270, 303–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Bailey, P.J. & Summerfield, Q. Information in speech: observations on the perception of [s]-stop clusters. J. Exp. Psychol. Hum. Percept. Perform. 6, 536–563 (1980).

    Article  CAS  PubMed  Google Scholar 

  50. Freedman, D.J., Riesenhuber, M., Poggio, T. & Miller, E.K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Romanski, L.M., Averbeck, B.B. & Diltz, M. Neural representation of vocalizations in the primate ventrolateral prefrontal cortex. J. Neurophysiol. 93, 734–747 (2005).

    Article  PubMed  Google Scholar 

  52. Russ, B.E., Ackelson, A.L., Baker, A.E. & Cohen, Y.E. Coding of auditory-stimulus identity in the auditory non-spatial processing stream. J. Neurophysiol. 99, 87–95 (2008).

    Article  PubMed  Google Scholar 

  53. Jiang, X. et al. Categorization training results in shape- and category-selective human neural plasticity. Neuron 53, 891–903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dhanjal, N.S., Handunnetthi, L., Patel, M.C. & Wise, R.J. Perceptual systems controlling speech production. J. Neurosci. 28, 9969–9975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boemio, A., Fromm, S., Braun, A. & Poeppel, D. Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat. Neurosci. 8, 389–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Geschwind, N. Disconnexion syndromes in animals and man. Brain 88, 237–294 585–644 (1965).

    Article  CAS  PubMed  Google Scholar 

  57. Hyde, K.L., Peretz, I. & Zatorre, R.J. Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia 46, 632–639 (2008).

    Article  PubMed  Google Scholar 

  58. Griffiths, T.D. & Warren, J.D. The planum temporale as a computational hub. Trends Neurosci. 25, 348–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Caplan, D., Rochon, E. & Waters, G.S. Articulatory and phonological determinants of word length effects in span tasks. Q. J. Exp. Psychol. A 45, 177–192 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Baddeley, A., Lewis, V. & Vallar, G. Exploring the articulatory loop. Q. J. Exp. Psychol. A 36, 233–252 (1984).

    Article  Google Scholar 

  61. Gelfand, J.R. & Bookheimer, S.Y. Dissociating neural mechanisms of temporal sequencing and processing phonemes. Neuron 38, 831–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Buchsbaum, B.R. & D'Esposito, M. The search for the phonological store: from loop to convolution. J. Cogn. Neurosci. 20, 762–778 (2008).

    Article  PubMed  Google Scholar 

  63. Obleser, J., Wise, R.J., Alex Dresner, M. & Scott, S.K. Functional integration across brain regions improves speech perception under adverse listening conditions. J. Neurosci. 27, 2283–2289 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fu, K.-M.G. et al. Auditory cortical neurons respond to somatosensory stimulation. J. Neurosci. 23, 7510–7515 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kayser, C., Petkov, C.I., Augath, M. & Logothetis, N.K. Functional imaging reveals visual modulation of specific fields in auditory cortex. J. Neurosci. 27, 1824–1835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Andersen, R.A. & Buneo, C.A. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Colby, C.L. & Goldberg, M.E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Wise, R.J. et al. Separate neural subsystems within 'Wernicke's area'. Brain 124, 83–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Hickok, G., Buchsbaum, B., Humphries, C. & Muftuler, T. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J. Cogn. Neurosci. 15, 673–682 (2003).

    Article  PubMed  Google Scholar 

  70. Warren, J.E., Wise, R.J. & Warren, J.D. Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends Neurosci. 28, 636–643 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Gibson, J.J. The theory of affordances. in Perceiving, Acting, and Knowing: Toward an Ecological Psychology (Shaw, R. & Bransford, J., eds.) 67–82 (Erlbaum, Hillsdale, New Jersey, USA, 1977).

    Google Scholar 

  72. Rizzolatti, G., Ferrari, P.F., Rozzi, S. & Fogassi, L. The inferior parietal lobule: where action becomes perception. Novartis Found. Symp. 270, 129–140; discussion 140–125, 164–129 (2006).

    PubMed  Google Scholar 

  73. Hickok, G. & Poeppel, D. Towards a functional neuroanatomy of speech perception. Trends Cogn. Sci. 4, 131–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Jacquemot, C. & Scott, S.K. What is the relationship between phonological short-term memory and speech processing? Trends Cogn. Sci. 10, 480–486 (2006).

    Article  PubMed  Google Scholar 

  76. Wilson, S.M., Saygin, A.P., Sereno, M.I. & Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nat. Neurosci. 7, 701–702 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, J.L., Penhune, V.B. & Zatorre, R.J. Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18, 2844–2854 (2008).

    Article  PubMed  Google Scholar 

  78. Leaver, A.M., Van Lare, J.E., Zielinski, B.A., Halpern, A. & Rauschecker, J.P. Brain activation during anticipation of sound sequences. J. Neurosci. 29, 2477–2485 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Müller-Preuss, P. & Ploog, D. Inhibition of auditory cortical neurons during phonation. Brain Res. 215, 61–76 (1981).

    Article  PubMed  Google Scholar 

  80. Eliades, S.J. & Wang, X. Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature 453, 1102–1106 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Numminen, J., Salmelin, R. & Hari, R. Subject's own speech reduces reactivity of the human auditory cortex. Neurosci. Lett. 265, 119–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Houde, J.F., Nagarajan, S.S., Sekihara, K. & Merzenich, M.M. Modulation of the auditory cortex during speech: an MEG study. J. Cogn. Neurosci. 14, 1125–1138 (2002).

    Article  PubMed  Google Scholar 

  83. Blakemore, S.J., Wolpert, D.M. & Frith, C.D. Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1, 635–640 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Guenther, F.H. Cortical interactions underlying the production of speech sounds. J. Commun. Disord. 39, 350–365 (2006).

    Article  PubMed  Google Scholar 

  85. Tourville, J.A., Reilly, K.J. & Guenther, F.H. Neural mechanisms underlying auditory feedback control of speech. Neuroimage 39, 1429–1443 (2008).

    Article  PubMed  Google Scholar 

  86. Frey, S., Campbell, J.S., Pike, G.B. & Petrides, M. Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J. Neurosci. 28, 11435–11444 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Petrides, M. & Pandya, D.N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116 (1984).

    Article  CAS  PubMed  Google Scholar 

  88. Wolpert, D.M., Doya, K. & Kawato, M. A unifying computational framework for motor control and social interaction. Phil. Trans. R. Soc. Lond. B 358, 593–602 (2003).

    Article  Google Scholar 

  89. Grush, R. The emulation theory of representation: motor control, imagery, and perception. Behav. Brain. Sci. 27, 377–396 discussion 396–442 (2004).

    Article  PubMed  Google Scholar 

  90. von Holst, E. & Mittelstaedt, H. Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37, 464–476 (1950).

    Article  Google Scholar 

  91. Hershberger, W. Afference copy, the closed-loop analogue of von Holst's efference copy. Cybern. Forum 8, 97–102 (1976).

    Google Scholar 

  92. Jääskeläinen, I.P. et al. Human posterior auditory cortex gates novel sounds to consciousness. Proc. Natl. Acad. Sci. USA 101, 6809–6814 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bar, M. et al. Top-down facilitation of visual recognition. Proc. Natl. Acad. Sci. USA 103, 449–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Indefrey, P. & Levelt, W.J.M. The spatial and temporal signatures of word production components. Cognition 92, 101–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Seyfarth, R.M., Cheney, D.L. & Marler, P. Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science 210, 801–803 (1980).

    Article  CAS  PubMed  Google Scholar 

  96. Nishitani, N. & Hari, R. Temporal dynamics of cortical representation for action. Proc. Natl. Acad. Sci. USA 97, 913–918 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Suga, N., O'Neill, W.E. & Manabe, T. Harmonic-sensitive neurons in the auditory cortex of the mustache bat. Science 203, 270–274 (1979).

    Article  CAS  PubMed  Google Scholar 

  98. Margoliash, D. & Fortune, E.S. Temporal and harmonic combination-sensitive neurons in the zebra finch's HVc. J. Neurosci. 12, 4309–4326 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rauschecker, J.P. Parallel processing in the auditory cortex of primates. Audiol. Neurootol. 3, 86–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Burton, H. & Jones, E.G. The posterior thalamic region and its cortical projection in New World and Old World monkeys. J. Comp. Neurol. 168, 249–301 (1976).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank D. Klemm for help with graphic design and T. Tan for help with editing. The work was supported by grants from the US National Institutes of Health (R01NS52494) and the US National Science Foundation (BCS-0519127 and PIRE-OISE-0730255) to J.P.R., and by Wellcome Trust Grant WT074414MA to S.K.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josef P Rauschecker or Sophie K Scott.

Supplementary information

Supplementary Information

Supplementary Figure 1, Supplementary Discussions 1 and 2 (PDF 736 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rauschecker, J., Scott, S. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12, 718–724 (2009). https://doi.org/10.1038/nn.2331

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2331

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing