Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Beyond cochlear implants: awakening the deafened brain

Abstract

Cochlear implants have provided hearing to more than 120,000 deaf people. Recent surgical developments include direct electrical stimulation of the brain, bilateral implants and implantation in children less than 1 year old. However, research is beginning to refocus on the role of the brain in providing benefits to implant users. The auditory system is able to use the highly impoverished input provided by implants to interpret speech, but this only works well in those who have developed language before their deafness or in those who receive their implant at a very young age. We discuss recent evidence suggesting that developing the ability of the brain to learn how to use an implant may be as important as further improvements of the implant technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical stimulation of the human auditory system.
Figure 2: Word recognition performance of implant users.
Figure 3: Relationship between the location of cochlea stimulation and the location of neurons tuned preferentially to the stimulating electrode in the primary auditory cortex.
Figure 4: Effect of age of implantation and age of testing on the latency of the P1 auditory evoked cortical response of pre-lingually deafened children.

Similar content being viewed by others

References

  1. Spahr, A.J. & Dorman, M.F. Performance of subjects fit with the Advanced Bionics CII and Nucleus 3G cochlear implant devices. Arch. Otolaryngol. Head Neck Surg. 130, 624–628 (2004).

    Article  Google Scholar 

  2. Krueger, B. et al. Performance groups in adult cochlear implant users: speech perception results from 1984 until today. Otol. Neurotol. 29, 509–512 (2008).

    Article  Google Scholar 

  3. Tallal, P. et al. Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 271, 81–84 (1996).

    Article  CAS  Google Scholar 

  4. Levi, D.M. & Li, R.W. Improving the performance of the amblyopic visual system. Phil. Trans. R. Soc. Lond. B Biol. Sci. 364, 399–407 (2009).

    Article  Google Scholar 

  5. Henderson Sabes, J. & Sweetow, R.W. Variables predicting outcomes on listening and communication enhancement (LACE) training. Int. J. Audiol. 46, 374–383 (2007).

    Article  Google Scholar 

  6. Fu, Q.J. & Galvin, J.J., III. Maximizing cochlear implant patients' performance with advanced speech training procedures. Hear. Res. 242, 198–208 (2008).

    Article  Google Scholar 

  7. Eisen, M.D. Djourno, Eyries, and the First implanted electrical neural stimulator to restore hearing. Otol. Neurotol. 24, 500–506 (2003).

    Article  Google Scholar 

  8. Shannon, R.V. & Otto, S.R. Psychophysical measures from electrical stimulation of the human cochlear nucleus. Hear. Res. 47, 159–168 (1990).

    Article  CAS  Google Scholar 

  9. Shannon, R.V. et al. Auditory brainstem implant. II. Postsurgical issues and performance. Otolaryngol. Head Neck Surg. 108, 634–642 (1993).

    Article  CAS  Google Scholar 

  10. Otto, S.R., Brackmann, D.E., Hitselberger, W.E., Shannon, R.V. & Kuchta, J. The multichannel auditory brainstem implant update: performance in 61 patients. J. Neurosurg. 96, 1063–1071 (2002).

    Article  Google Scholar 

  11. Otto, S.R. et al. Audiological outcomes with the penetrating electrode auditory brainstem implant. Otol. Neurotol. 29, 1147–1154 (2008).

    Article  Google Scholar 

  12. Colletti, V. & Shannon, R.V. Open set speech perception with auditory brainstem implant? Laryngoscope 115, 1974–1978 (2005).

    Article  Google Scholar 

  13. Colletti, V. et al. The first successful case of hearing produced by electrical stimulation of the human midbrain. Otol. Neurotol. 28, 39–43 (2007).

    Article  Google Scholar 

  14. Lenarz, T., Lim, H.H., Reuter, G., Patrick, J.F. & Lenarz, M. The auditory midbrain implant: a new auditory prosthesis for neural deafness-concept and device description. Otol. Neurotol. 27, 838–843 (2006).

    Article  Google Scholar 

  15. Tucci, D.L., Born, D.E. & Rubel, E.W. Changes in spontaneous activity and CNS morphology associated with conductive and sensorineural hearing loss in chickens. Ann. Otol. Rhinol. Laryngol. 96, 343–350 (1987).

    Article  CAS  Google Scholar 

  16. Parks, T.N., Rubel, E.W., Popper, A.N. & Fay, R.R. Plasticity of the Auditory System (Springer, New York, 2004).

    Book  Google Scholar 

  17. Tierney, T.S., Russell, F.A. & Moore, D.R. Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. J. Comp. Neurol. 378, 295–306 (1997).

    Article  CAS  Google Scholar 

  18. Moore, D.R. Trophic influences of excitatory and inhibitory synapses on neurones in the auditory brainstem. Neuroreport 3, 269–272 (1992).

    Article  CAS  Google Scholar 

  19. Harris, J.A., Iguchi, F., Seidl, A.H., Lurie, D.I. & Rubel, E.W. Afferent deprivation elicits a transcriptional response associated with neuronal survival after a critical period in the mouse cochlear nucleus. J. Neurosci. 28, 10990–11002 (2008).

    Article  CAS  Google Scholar 

  20. Mossop, J.E., Wilson, M.J., Caspary, D.M. & Moore, D.R. Down-regulation of inhibition following unilateral deafening. Hear. Res. 147, 183–187 (2000).

    Article  CAS  Google Scholar 

  21. Eggermont, J.J. Role of auditory cortex in noise- and drug-induced tinnitus. Am. J. Audiol. 17, S162–S169 (2008).

    Article  Google Scholar 

  22. Dahmen, J.C. & King, A.J. Learning to hear: plasticity of auditory cortical processing. Curr. Opin. Neurobiol. 17, 456–464 (2007).

    Article  CAS  Google Scholar 

  23. de Villers-Sidani, E., Chang, E.F., Bao, S. & Merzenich, M.M. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. J. Neurosci. 27, 180–189 (2007).

    Article  CAS  Google Scholar 

  24. Noreña, A.J., Gourévitch, B., Aizawa, N. & Eggermont, J.J. Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nat. Neurosci. 9, 932–939 (2006).

    Article  Google Scholar 

  25. Kamke, M.R., Brown, M. & Irvine, D.R.F. Basal forebrain cholinergic input is not essential for lesion-induced plasticity in mature auditory cortex. Neuron 48, 675–686 (2005).

    Article  CAS  Google Scholar 

  26. Polley, D.B., Steinberg, E.E. & Merzenich, M.M. Perceptual learning directs auditory cortical map reorganization through top-down influences. J. Neurosci. 26, 4970–4982 (2006).

    Article  CAS  Google Scholar 

  27. Hyson, R.L. & Rubel, E.W. Transneuronal regulation of protein synthesis in the brain stem auditory system of the chick requires synaptic activation. J. Neurosci. 9, 2835–2845 (1989).

    Article  CAS  Google Scholar 

  28. Leake, P.A., Stakhovskaya, O., Hradek, G.T. & Hetherington, A.M. Factors influencing neurotrophic effects of electrical stimulation in the deafened developing auditory system. Hear. Res. 242, 86–99 (2008).

    Article  Google Scholar 

  29. Fallon, J.B., Irvine, D.R. & Shepherd, R.K. Cochlear implant use following neonatal deafness influences the cochleotopic organization of the primary auditory cortex in cats. J. Comp. Neurol. 512, 101–114 (2009).

    Article  Google Scholar 

  30. Kral, A., Tillein, J., Heid, S., Klinke, R. & Hartmann, R. Cochlear implants: cortical plasticity in congenital deprivation. Prog. Brain Res. 157, 283–313 (2006).

    Article  Google Scholar 

  31. Moore, C.M., Vollmer, M., Leake, P.A., Snyder, R.L. & Rebscher, S.J. The effects of chronic intracochlear electrical stimulation on inferior colliculus spatial representation in adult deafened cats. Hear. Res. 164, 82–96 (2002).

    Article  Google Scholar 

  32. Brown, S.D., Hardisty-Hughes, R.E. & Mburu, P. Quiet as a mouse: dissecting the molecular and genetic basis of hearing. Nat. Rev. Genet. 9, 277–290 (2008).

    Article  CAS  Google Scholar 

  33. Eisenberg, L.S., Shannon, R.V., Martinez, A.S., Wygonski, J. & Boothroyd, A. Speech recognition with reduced spectral cues as a function of age. J. Acoust. Soc. Am. 107, 2704–2710 (2000).

    Article  CAS  Google Scholar 

  34. Kuhl, P.K. Early language acquisition: cracking the speech code. Nat. Rev. Neurosci. 5, 831–843 (2004).

    Article  CAS  Google Scholar 

  35. Maurer, D., Lewis, T.L. & Mondloch, C.J. Plasticity of the visual system. in The Handbook of Developmental Cognitive Neuroscience 2nd edn. (Nelson, C.A. & Luciana, M., eds.) 415–437 (MIT Press, Boston, 2008).

    Google Scholar 

  36. Knudsen, E.I. Sensitive periods in the development of the brain and behavior. J. Cogn. Neurosci. 16, 1412–1425 (2004).

    Article  Google Scholar 

  37. Svirsky, M.A., Robbins, A.M., Kirk, K.I., Pisoni, D.B. & Miyamoto, R.T. Language development in profoundly deaf children with cochlear implants. Psychol. Sci. 11, 153–158 (2000).

    Article  CAS  Google Scholar 

  38. Sharma, A., Gilley, P.M., Dorman, M.F. & Baldwin, R. Deprivation-induced cortical reorganization in children with cochlear implants. Int. J. Audiol. 46, 494–499 (2007).

    Article  Google Scholar 

  39. Galvin, J.J., III., Fu, Q.J. & Shannon, R.V. The importance of temporal envelope and fine structure cues for speech and music: lessons from cochlear implants. Ann. N Y Acad. Sci. (in the press).

  40. Vongpaisal, T., Trehub, S.E. & Schellenberg, E.G. Song recognition by children and adolescents with cochlear implants. J. Speech Lang. Hear. Res. 49, 1091–1103 (2006).

    Article  Google Scholar 

  41. Moore, D.R., Ferguson, M.A., Halliday, L.F. & Riley, A. Frequency discrimination in children: perception, learning and attention. Hear. Res. 238, 147–154 (2008).

    Article  Google Scholar 

  42. Shannon, R.V., Zeng, F.G., Kamath, V., Wygonski, J. & Ekelid, M. Speech recognition with primarily temporal cues. Science 270, 303–304 (1995).

    Article  CAS  Google Scholar 

  43. Friesen, L.M., Shannon, R.V., Baskent, D. & Wang, X. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110, 1150–1163 (2001).

    Article  CAS  Google Scholar 

  44. Davis, M.H., Johnsrude, I.S., Hervais-Adelman, A., Tayler, K. & McGettingan, C. Lexical information drives perceptual learning of distorted speech: evidence from the comprehension of noise-vocoded sentences. J. Exp. Psychol. Gen. 134, 222–241 (2005).

    Article  Google Scholar 

  45. Stacey, P.C. & Summerfield, A.Q. Comparison of word-, sentence- and phoneme-based training strategies in improving the perception of spectrally distorted speech. J. Speech Lang. Hear. Res. 51, 526–538 (2008).

    Article  Google Scholar 

  46. Faulkner, A., Rosen, S. & Norman, C. The right information may matter more than frequency-place alignment: simulations of frequency-aligned and upward shifting cochlear implant processors for a shallow electrode array insertion. Ear Hear. 27, 139–152 (2006).

    Article  Google Scholar 

  47. Loebach, J.L., Bent, T. & Pisoni, D.B. Multiple routes to the perceptual learning of speech. J. Acoust. Soc. Am. 124, 552–561 (2008).

    Article  Google Scholar 

  48. Moore, D.R., Halliday, L.F. & Amitay, S. Use of auditory learning to manage listening problems in children. Phil. Trans. R. Soc. Lond. B 364, 409–420 (2009).

    Article  Google Scholar 

  49. Moore, D.R., Rosenberg, J.F. & Coleman, J.S. Discrimination training of phonemic contrasts enhances phonological processing in mainstream school children. Brain Lang. 94, 72–85 (2005).

    Article  Google Scholar 

  50. Wright, B.A. & Zhang, Y. A review of the generalization of auditory learning. Phil. Trans. R. Soc. Lond. B 364, 301–311 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R Moore.

Ethics declarations

Competing interests

David Moore is the founder, a director and a shareholder of MindWeavers PLC, a company that makes and sells software for enhancing listening and cognitive processing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, D., Shannon, R. Beyond cochlear implants: awakening the deafened brain. Nat Neurosci 12, 686–691 (2009). https://doi.org/10.1038/nn.2326

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing