Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stability of surface NMDA receptors controls synaptic and behavioral adaptations to amphetamine

Abstract

Plastic changes in glutamatergic synapses that lead to endurance of drug craving and addiction are poorly understood. We examined the turnover and trafficking of NMDA receptors and found that chronic exposure to the psychostimulant amphetamine (AMPH) induced selective downregulation of NMDA receptor NR2B subunits in the confined surface membrane pool of rat striatal neurons at synaptic sites. This downregulation was a long-lived event and was a result of the destabilization of surface-expressed NR2B caused by accelerated ubiquitination and degradation of crucial NR2B-anchoring proteins by the ubiquitin-proteasome system. The biochemical loss of synaptic NR2B further translated to the modulation of synaptic plasticity in the form of long-term depression at cortico-accumbal glutamatergic synapses. Behaviorally, genetic disruption of NR2B induced and restoration of NR2B loss prevented behavioral sensitization to AMPH. Our data identify NR2B as an important regulator in the remodeling of excitatory synapses and persistent psychomotor plasticity in response to AMPH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Repeated AMPH administration causes behavioral sensitization and reduces NR2B protein expression in the rat striatum.
Figure 2: Repeated AMPH administration reduces the amount of NR2B protein that is present in specific subcellular compartments.
Figure 3: Repeated AMPH administration reduces NR2B protein levels in the specific surface membrane pool.
Figure 4: Repeated AMPH administration increases ubiquitin conjugation in striatal neurons.
Figure 5: Repeated AMPH administration remodels excitatory synapses via the ubiquitin-proteasome system.
Figure 6: Repeated AMPH administration affects NMDAR-mediated, ifenprodil-sensitive EPSCs and synaptic plasticity at cortico-accumbal glutamatergic synapses.
Figure 7: Effects of RO25-6981 on behavioral responses to acute or chronic AMPH administration.
Figure 8: Effects of NR2B siRNAs on behavioral responses to AMPH.

Similar content being viewed by others

References

  1. Vanderschuren, L.J. & Kalivas, P.W. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl.) 151, 99–120 (2000).

    Article  CAS  Google Scholar 

  2. Nestler, E.J. Is there a common molecular pathway for addiction? Nat. Neurosci. 8, 1445–1449 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hyman, S.E., Malenka, R.C. & Nestler, E.J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Tzschentke, T.M. & Schmidt, W.J. Glutamatergic mechanisms in addiction. Mol. Psychiatry 8, 373–382 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Thomas, M.J., Beurrier, C., Bonci, A. & Malenka, R.C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci. 4, 1217–1223 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Wolf, M.E., Sun, X., Mangiavacchi, S. & Chao, S.Z. Psychomotor stimulants and neuronal plasticity. Neuropharmacology 47, 61–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Standaert, D.G., Friberg, I.K., Landwehrmeyer, G.B., Young, A.B. & Penney, J.B. Jr. Expression of NMDA glutamate receptor subunit mRNAs in neurochemically identified projection and interneurons in the striatum of the rat. Brain Res. Mol. Brain Res. 64, 11–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Landwehrmeyer, G.B., Standaert, D.G., Testa, C.M., Penney, J.B. Jr & Young, A.B. NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J. Neurosci. 15, 5297–5307 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, Q. & Reiner, A. Cellular distribution of the NMDA receptor NR2A/2B subunits in the rat striatum. Brain Res. 743, 346–352 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Kuppenbender, K.D. et al. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection neurons and interneurons in the human striatum. J. Comp. Neurol. 419, 407–421 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Loftis, J.M. & Janowsky, A. The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation and clinical implications. Pharmacol. Ther. 97, 55–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Dunah, A.W. & Standaert, D.G. Dopamine D1 receptor–dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J. Neurosci. 21, 5546–5558 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong, H.K. et al. Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J. Comp. Neurol. 450, 303–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Tang, W., Wesley, M., Freeman, W.M., Liang, B. & Hemby, S.E. Alterations in ionotropic glutamate receptor subunits during binge cocaine self-administration and withdrawal in rats. J. Neurochem. 89, 1021–1033 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Wenzel, A., Fritschv, J.M., Mohler, H. & Benke, D. NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B and NR2C subunit proteins. J. Neurochem. 68, 469–478 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Yao, W.D. et al. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41, 625–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wise, R.A. Brain reward circuitry: insights from unsensed incentives. Neuron 36, 229–240 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Lissin, D.V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95, 7097–7102 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McIlhinney, R.A. et al. Assembly intracellular targeting and cell surface expression of the human N-methyl-d-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 37, 1355–1367 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. David, V., Hochstenbach, F., Rajagopalan, S. & Brenner, M.B. Interaction with newly synthesized and retained proteins in the endoplasmic reticulum suggests a chaperone function for human integral membrane protein I P90 (calnexin). J. Biol. Chem. 268, 9585–9592 (1993).

    CAS  PubMed  Google Scholar 

  21. Liu, X.Y. et al. Modulation of D2R-NR2B interaction in response to cocaine. Neuron 52, 897–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Grosshans, D.R., Clayton, D.A., Coultrap, S.J. & Browning, M.D. LTP leads to rapid surface expression of NMDA, but not AMPA, receptors in adult rat CA1. Nat. Neurosci. 5, 27–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Boudreau, A.C. & Wolf, M.E. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J. Neurosci. 25, 9144–9151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Yi, J.J. & Ehlers, M.D. Ubiquitin and protein turnover in synaptic function. Neuron 47, 629–632 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Fischer, G. et al. Ro 25–6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J. Pharmacol. Exp. Ther. 283, 1285–1292 (1997).

    CAS  PubMed  Google Scholar 

  27. Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Fitzgerald, L.W., Ortiz, J., Hamedani, A.G. & Nestler, E.J. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J. Neurosci. 16, 274–282 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Churchill, L., Swanson, C.J., Urbina, M. & Kalivas, P.W. Repeated cocaine alters glutamate receptors subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J. Neurochem. 72, 2397–2403 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Loftis, J.M. & Janowsky, A. Regulation of NMDA receptor subunits and nitric oxide synthase expression during cocaine withdrawal. J. Neurochem. 75, 2040–2050 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Voorn, P., Vanderschuren, L.J., Groenewegen, H.J., Robbins, T.W. & Pennartz, C.M. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 27, 468–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Yamaguchi, M. et al. Repeated cocaine administration differentially affects NMDA receptor subunit (NR1, NR2A-C) mRNAs in rat brain. Synapse 46, 157–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Vissel, B., Krupp, J.J., Heinemann, S.F. & Westbrook, G.L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci. 4, 587–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kennedy, M.J. & Ehlers, M.D. Organelles and trafficking machinery for postsynaptic plasticity. Annu. Rev. Neurosci. 29, 325–362 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bingol, B. & Schuman, E.M. A proteasome-sensitive connection between PSD-95 and GluR1 endocytosis. Neuropharmacology 47, 755–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Colledge, M. et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40, 595–607 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kato, A., Rouach, N., Nicoll, R.A. & Bredt, D.S. Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc. Natl. Acad. Sci. USA 102, 5600–5605 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, E. & Sheng, M. PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771–781 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Roche, K.W. et al. Molecular determinations of NMDA receptor internalization. Nat. Neurosci. 4, 794–802 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Chung, H.J., Huang, Y.H., Lau, L.F. & Huganir, R.L. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J. Neurosci. 24, 10248–10259 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kalivas, P.W. & Hu, X.T. Exciting inhibition in psychostimulant addiction. Trends Neurosci. 29, 610–616 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Thomas, M.J., Malenka, R.C. & Bonci, A. Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci. 20, 5581–5586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin, M. et al. Cocaine self-administration selectively abolishes LTD in the core, but not the shell, of the nucleus accumbens. Nat. Neurosci. 9, 868–869 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Nishioku, T., Shimazoe, T., Yamamoto, Y., Nakanishi, H. & Watanabe, S. Expression of long-term potentiation of the striatum in methamphetamine-sensitized rats. Neurosci. Lett. 268, 81–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Hoffman, A.F., Oz, M., Caulder, T. & Lupica, C.R. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci. 23, 4815–4820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia, J.X. et al. Alterations of rat corticostriatal synaptic plasticity after chronic ethanol exposure and withdrawal. Alcohol. Clin. Exp. Res. 30, 819–824 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Conrad, K.L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fitzgerald, L.W., Ortiz, J., Hamedani, A.G. & Nestler, E.J. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J. Neurosci. 16, 274–282 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mead, A.N., Zamanillo, D., Becker, N. & Stephens, D.N. AMPA-receptor GluR1 subunits are involved in the control over behavior by cocaine-paired cues. Neuropsychopharmacology 32, 343–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Sutton, M.A. et al. Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421, 70–75 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L.S. Wang and M.-L. Guo for technical support. This work was supported by grants from the US National Institutes of Health (R01DA010355 and R01MH061469 to J.Q.W.), a grant from the Saint Luke's Hospital foundation (J.Q.W.), the 973 Program (No. 2007CB507404, J.-G.C.) and the Chang Jiang Scholar Program of China (J.-G.C).

Author information

Authors and Affiliations

Authors

Contributions

L.-M.M., W.W., G.-C.Z., X.-Y.L. and M.H. conducted the biochemical and behavioral experiments and analyzed the data. W.W., X.-P.C. and Y.-J.Y. performed the electrophysiological experiments. C.J.P., E.E.F. and S.B. collaborated by providing expert advice, analyzing and interpreting the data, and developing and editing the manuscript. J.-G.C. oversaw the electrophysiological experiments and other studies and co-wrote the manuscript. J.Q.W. supervised the project, designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Jian-Guo Chen or John Q Wang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 337 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, LM., Wang, W., Chu, XP. et al. Stability of surface NMDA receptors controls synaptic and behavioral adaptations to amphetamine. Nat Neurosci 12, 602–610 (2009). https://doi.org/10.1038/nn.2300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing