Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The endogenous inhibitor of Akt, CTMP, is critical to ischemia-induced neuronal death

Abstract

Dysregulation of Akt signaling is important in a broad range of diseases that includes cancer, diabetes and heart disease. The role of Akt signaling in brain disorders is less clear. We found that global ischemia in intact rats triggered expression and activation of the Akt inhibitor CTMP (carboxyl-terminal modulator protein) in vulnerable hippocampal neurons and that CTMP bound and extinguished Akt activity and was essential to ischemia-induced neuronal death. Although ischemia induced a marked phosphorylation and nuclear translocation of Akt, phosphorylated Akt was not active in post-ischemic neurons, as assessed by kinase assays and phosphorylation of the downstream targets GSK-3β and FOXO3A. RNA interference–mediated depletion of CTMP in a clinically relevant model of stroke restored Akt activity and rescued hippocampal neurons. Our results indicate that CTMP is important in the neurodegeneration that is associated with stroke and identify CTMP as a therapeutic target for the amelioration of hippocampal injury and cognitive deficits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global ischemia promotes marked phosphorylation and nuclear translocation of the pro-survival kinase Akt in CA1 neurons that are destined to die.
Figure 2: Preconditioning, but not ischemia, promotes Akt kinase activity and phosphorylation of Akt targets.
Figure 3: Ischemia promotes CTMP expression and Akt-CTMP assembly in CA1.
Figure 4: CTMP is critical to ischemia-induced neuronal death.

Similar content being viewed by others

References

  1. Graham, S.H. & Chen, J. Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab. 21, 99–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lo, E.H., Dalkara, T. & Moskowitz, M.A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4, 399–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Liou, A.K., Clark, R.S., Henshall, D.C., Yin, X.M. & Chen, J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog. Neurobiol. 69, 103–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Zukin, R.S. et al. Molecular and cellular mechanisms of ischemia-induced neuronal death. in Stroke: Pathophysiology, Diagnosis and Management (eds. Mohr, J.P., Choi, D.W., Grotta, J.C., Weir, B. & Wolf, P.A.) 829–854 (Churchill Livingstone, Philadelphia, 2004).

    Chapter  Google Scholar 

  5. Ouyang, Y.B. et al. Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome C and activation of caspase-like proteases. J. Cereb. Blood Flow Metab. 19, 1126–1135 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Krajewski, S. et al. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 5752–5757 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanaka, H. et al. Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J. Neurosci. 24, 2750–2759 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zou, H., Henzel, W.J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c–dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Colbourne, F., Sutherland, G.R. & Auer, R.N. Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J. Neurosci. 19, 4200–4210 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kirino, T. Ischemic tolerance. J. Cereb. Blood Flow Metab. 22, 1283–1296 (2002).

    Article  PubMed  Google Scholar 

  11. Gidday, J.M. Cerebral preconditioning and ischaemic tolerance. Nat. Rev. Neurosci. 7, 437–448 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Obrenovitch, T.P. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol. Rev. 88, 211–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Pignataro, G., Scorziello, A., Di, R.G. & Annunziato, L. Post-ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS J. 276, 46–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Yano, S., Tokumitsu, H. & Soderling, T.R. Calcium promotes cell survival through CaM-K kinase activation of the protein kinase B pathway. Nature 396, 584–587 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Hashiguchi, A. et al. Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus. J. Cereb. Blood Flow Metab. 24, 271–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, H., Sapolsky, R.M. & Steinberg, G.K. Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol. Neurobiol. 34, 249–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Yuan, J. & Yanker, B.Y. Apoptosis in the nervous system. Nature 407, 802–809 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Dudek, H. et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Brunet, A., Datta, S.R. & Greenberg, M.E. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11, 297–305 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Parcellier, A., Tintignac, L.A., Zhuravleva, E. & Hemmings, B.A. PKB and the mitochondria: AKTing on apoptosis. Cell. Signal. 20, 21–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Coffer, P.J., Jin, J. & Woodgett, J.R. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem. J. 335, 1–13 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hresko, R.C. & Mueckler, M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J. Biol. Chem. 280, 40406–40416 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Sarbassov, D.D., Guertin, D.A., Ali, S.M. & Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Cardone, M.H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Yano, S. et al. Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J. Cereb. Blood Flow Metab. 21, 351–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Endo, H., Nito, C., Kamada, H., Nishi, T. & Chan, P.H. Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 26, 1479–1489 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Franke, T.F. Intracellular signaling by Akt: bound to be specific. Sci. Signal. 1, e29 (2008).

    Article  Google Scholar 

  29. Maira, S.M. et al. Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294, 374–380 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Knobbe, C.B., Reifenberger, J., Blaschke, B. & Reifenberger, G. Hypermethylation and transcriptional downregulation of the carboxyl-terminal modulator protein gene in glioblastomas. J. Natl. Cancer Inst. 96, 483–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Maehama, T. & Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Shaw, J. & Kirshenbaum, L.A. Prime time for JNK-mediated Akt reactivation in hypoxia-reoxygenation. Circ. Res. 98, 7–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Vivanco, I. & Sawyers, C.L. The phosphatidylinositol 3 kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Manning, B.D. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J. Cell Biol. 167, 399–403 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hausenloy, D.J., Mocanu, M.M. & Yellon, D.M. Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning. Cardiovasc. Res. 63, 305–312 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Van den Haute, C., Eggermont, K., Nuttin, B., Debyser, Z. & Baekelandt, V. Lentiviral vector–mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain. Hum. Gene Ther. 14, 1799–1807 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Dittgen, T. et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc. Natl. Acad. Sci. USA 101, 18206–18211 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, J.H. et al. Gap junction–mediated propagation and amplification of cell injury. Nat. Neurosci. 1, 494–500 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Ono, H. et al. Carboxy-terminal modulator protein induces Akt phosphorylation and activation, thereby enhancing antiapoptotic, glycogen synthetic and glucose uptake pathways. Am. J. Physiol. Cell Physiol. 293, C1576–C1585 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Noshita, N., Lewen, A., Sugawara, T. & Chan, P.H. Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 21, 1442–1450 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Hillion, J.A. et al. Involvement of Akt in preconditioning-induced tolerance to ischemia in PC12 cells. J. Cereb. Blood Flow Metab. 26, 1323–1331 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Miyawaki, T. et al. Ischemic preconditioning blocks BAD translocation, Bcl-xL cleavage and large channel activity in mitochondria of postischemic hippocampal neurons. Proc. Natl. Acad. Sci. USA 105, 4892–4897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Calderone, A. et al. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J. Neurosci. 24, 9903–9913 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramaswamy, S. et al. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3 kinase/Akt pathway. Proc. Natl. Acad. Sci. USA 96, 2110–2115 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Follenzi, A. & Naldini, L. Generation of HIV-1–derived lentiviral vectors. Methods Enzymol. 346, 454–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Follenzi, A., Sabatino, G., Lombardo, A., Boccaccio, C. & Naldini, L. Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum. Gene Ther. 13, 243–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, S. et al. Expression of Ca2+-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 43, 43–55 (2004).

    Article  PubMed  Google Scholar 

  49. Skeberdis, V.A. et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat. Neurosci. 9, 501–510 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Backer and L.K. Kaczmarek for helpful scientific discussions and D.T. Borst for editorial assistance. This work was supported by US National Institutes of Health grants NS46742 and NS45693 (to R.S.Z.) and by a generous grant from the F.M. Kirby Foundation Program in Neural Repair and Neuroprotection. R.S.Z. is the F.M. Kirby Professor in Neural Repair and Protection.

Author information

Authors and Affiliations

Authors

Contributions

T.M. and D.O. designed and conducted the experiments, prepared all of the figures and participated in writing the manuscript. K.-M.N. designed experiments and (with A.F.) provided guidance in the cloning of miRNA and cDNA constructs into the lentiviral vector. A.L.-B. carried out western blot and immunoprecipitation experiments. B.A.H. provided the CTMP constructs. A.F. provided the lentiviral vector and wrote the lentiviral methods. R.S.Z. designed experiments, supervised the study and wrote the manuscript.

Corresponding author

Correspondence to R Suzanne Zukin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1003 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyawaki, T., Ofengeim, D., Noh, KM. et al. The endogenous inhibitor of Akt, CTMP, is critical to ischemia-induced neuronal death. Nat Neurosci 12, 618–626 (2009). https://doi.org/10.1038/nn.2299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing