Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Bi-stable neural state switches

Abstract

Here we describe bi-stable channelrhodopsins that convert a brief pulse of light into a stable step in membrane potential. These molecularly engineered probes nevertheless retain millisecond-scale temporal precision. Photocurrents can be precisely initiated and terminated with different colors of light, but operate at vastly longer time scales than conventional channelrhodopsins as a result of modification at the C128 position that extends the lifetime of the open state. Because of their enhanced kinetic stability, these step-function tools are also effectively responsive to light at orders of magnitude lower intensity than wild-type channelrhodopsins. These molecules therefore offer important new capabilities for a broad range of in vivo applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Step-function optogenetics: C128 mutations.
Figure 2: Precise step termination with red-shifted light.
Figure 3: SFO genes in neurons.
Figure 4: Bi-stable switching behavior in neurons.

Similar content being viewed by others

References

  1. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  2. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  3. Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633 (2008).

    Article  Google Scholar 

  4. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  CAS  Google Scholar 

  5. Aravanis, A.M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  Google Scholar 

  6. Arenkiel, B.R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  Google Scholar 

  7. Gradinaru, V., Thompson, K.R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Article  Google Scholar 

  8. Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238 (2007).

    Article  CAS  Google Scholar 

  9. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behavior in freely moving mice. Nature 451, 61–64 (2008).

    Article  CAS  Google Scholar 

  10. Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    Article  CAS  Google Scholar 

  11. Campagnola, L., Wang, H. & Zylka, M.J. Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin-2. J. Neurosci. Methods 169, 27–33 (2008).

    Article  CAS  Google Scholar 

  12. Douglass, A.D., Kraves, S., Deisseroth, K., Schier, A.F. & Engert, F. Escape behavior elicited by single, channelrhodopsin-2–evoked spikes in zebrafish somatosensory neurons. Curr. Biol. 18, 1133–1137 (2008).

    Article  CAS  Google Scholar 

  13. Farah, N., Reutsky, I. & Shoham, S. Patterned optical activation of retinal ganglion cells. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2007 6369–6371 (2007).

  14. Han, X. & Boyden, E.S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2, e299 (2007).

    Article  Google Scholar 

  15. Hwang, R.Y. et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 17, 2105–2116 (2007).

    Article  CAS  Google Scholar 

  16. Ishizuka, T., Kakuda, M., Araki, R. & Yawo, H. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54, 85–94 (2006).

    Article  CAS  Google Scholar 

  17. Lagali, P.S. et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci. 11, 667–675 (2008).

    Article  CAS  Google Scholar 

  18. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  Google Scholar 

  19. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  Google Scholar 

  20. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  Google Scholar 

  21. Schroll, C. et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747 (2006).

    Article  CAS  Google Scholar 

  22. Toni, N. et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11, 901–907 (2008).

    Article  CAS  Google Scholar 

  23. Wang, H. et al. High-speed mapping of synaptic connectivity using photostimulation in channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. USA 104, 8143–8148 (2007).

    Article  CAS  Google Scholar 

  24. Zhang, F., Wang, L.P., Boyden, E.S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    Article  CAS  Google Scholar 

  25. Zhang, Y.P. & Oertner, T.G. Optical induction of synaptic plasticity using a light-sensitive channel. Nat. Methods 4, 139–141 (2007).

    Article  CAS  Google Scholar 

  26. Zhao, S. et al. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol. 36, 141–154 (2008).

    Article  CAS  Google Scholar 

  27. Kalaidzidis, I.V., Kalaidzidis, Y.L. & Kaulen, A.D. Flash-induced voltage changes in halorhodopsin from Natronobacterium pharaonis. FEBS Lett. 427, 59–63 (1998).

    Article  CAS  Google Scholar 

  28. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  29. Oesterhelt, D., Hegemann, P. & Tittor, J. The photocycle of the chloride pump halorhodopsin. II. Quantum yields and a kinetic model. EMBO J. 4, 2351–2356 (1985).

    Article  CAS  Google Scholar 

  30. Hegemann, P., Ehlenbeck, S. & Gradmann, D. Multiple photocycles of channelrhodopsin. Biophys. J. 89, 3911–3918 (2005).

    Article  CAS  Google Scholar 

  31. Miesenböck, G. & Kevrekidis, I.G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005).

    Article  Google Scholar 

  32. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    Article  CAS  Google Scholar 

  33. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    Article  CAS  Google Scholar 

  34. Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P. & Lanyi, J.K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286, 255–261 (1999).

    Article  CAS  Google Scholar 

  35. Belrhali, H. et al. Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9-A resolution. Structure 7, 909–917 (1999).

    Article  CAS  Google Scholar 

  36. Peralvarez-Marin, A., Marquez, M., Bourdelande, J.L., Querol, E. & Padros, E. Thr-90 plays a vital role in the structure and function of bacteriorhodopsin. J. Biol. Chem. 279, 16403–16409 (2004).

    Article  CAS  Google Scholar 

  37. Schobert, B., Brown, L.S. & Lanyi, J.K. Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. J. Mol. Biol. 330, 553–570 (2003).

    Article  CAS  Google Scholar 

  38. Wanko, M., Hoffmann, M., Frahmcke, J., Frauenheim, T. & Elstner, M. Effect of polarization on the opsin shift in rhodopsins. 2. Empirical polarization models for proteins. J. Phys. Chem. B 112, 11468–11478 (2008).

    Article  CAS  Google Scholar 

  39. Hegemann, P. Algal sensory photoreceptors. Annu. Rev. Plant Biol. 59, 167–189 (2008).

    Article  CAS  Google Scholar 

  40. Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P. & Lanyi, J.K. Structure of bacteriorhodopsin at 1.55 A resolution. J. Mol. Biol. 291, 899–911 (1999).

    Article  CAS  Google Scholar 

  41. Patzelt, H. et al. The structures of the active center in dark-adapted bacteriorhodopsin by solution-state NMR spectroscopy. Proc. Natl. Acad. Sci. USA 99, 9765–9770 (2002).

    Article  CAS  Google Scholar 

  42. Lanyi, J.K. & Schobert, B. Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2 and M2' intermediates of the photocycle. J. Mol. Biol. 328, 439–450 (2003).

    Article  CAS  Google Scholar 

  43. Ritter, E., Stehfest, K., Berndt, A., Hegemann, P. & Bartl, F.J. Monitoring light induced structural changes of channelrhodopsin-2 by UV/Vis and fourier transform infrared spectroscopy. J. Biol. Chem. 283, 35033–35041 (2008).

    Article  CAS  Google Scholar 

  44. Ernst, O.P. et al. Photoactivation of channelrhodopsin. J. Biol. Chem. 283, 1637–1643 (2008).

    Article  CAS  Google Scholar 

  45. Bamann, C., Kirsch, T., Nagel, G. & Bamberg, E. Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J. Mol. Biol. 375, 686–694 (2008).

    Article  CAS  Google Scholar 

  46. Flitsch, S.L. & Khorana, H.G. Structural studies on transmembrane proteins. 1. Model study using bacteriorhodopsin mutants containing single cysteine residues. Biochemistry 28, 7800–7805 (1989).

    Article  CAS  Google Scholar 

  47. Joh, N.H. et al. Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Nature 453, 1266–1270 (2008).

    Article  CAS  Google Scholar 

  48. Sanchez-Vives, M.V. & McCormick, D.A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000).

    Article  CAS  Google Scholar 

  49. Goto, Y. & O'Donnell, P. Network synchrony in the nucleus accumbens in vivo. J. Neurosci. 21, 4498–4504 (2001).

    Article  CAS  Google Scholar 

  50. Facciotti, M.T. et al. Structure of an early intermediate in the M-state phase of the bacteriorhodopsin photocycle. Biophys. J. 81, 3442–3455 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.B. is supported by a Leibniz Graduate School fellowship, O.Y. by an European Molecular Biology Organization long-term postdoctoral fellowship and L.A.G. by a Stanford Bio-X Graduate Fellowship. P.H. is supported by the Deutsche Forschungsgemeinschaft (SFB498 and CoE: Unifying concepts in Catalysis). K.D. is supported by the California Institute of Regenerative Medicine, the McKnight and Wallace H. Coulter Foundations, the National Science Foundation, the US National Institute of Mental Health, the US National Institute on Drug Abuse, the US National Institutes of Health Pioneer Award, and the Kinetics and Keck Foundations.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berndt, A., Yizhar, O., Gunaydin, L. et al. Bi-stable neural state switches. Nat Neurosci 12, 229–234 (2009). https://doi.org/10.1038/nn.2247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing