Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bidirectional modulation of synaptic functions by Eph/ephrin signaling

Abstract

Ephrin ligands and their cognate Eph receptors guide axons during neural development and regulate synapse formation and neuronal plasticity in the adult. Because ephrins are tethered to the plasma membrane and possess reverse signaling properties, the Eph-ephrin system can function in a bidirectional, contact-mediated fashion between two opposing cells. Eph receptors expressed on dendrites are activated by ephrins (on axons or on astrocytes) and regulate spine and synapse formation. They also participate in activity-induced long-term changes in synaptic strength such as long-term potentiation (LTP). When expressed on axon terminals, ephrins promote presynaptic differentiation and enhance neurotransmitter release, thereby supporting presynaptic forms of LTP. In some cases, Eph receptors can simply act as ligands for ephrins without any requirement for Eph receptor signaling, suggesting that the system does not always function bidirectionally.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structural features of ephrins and Ephs and the concept of bidirectional signaling.
Figure 2: Eph forward signaling modulates spine and synapse formation.
Figure 3: EphrinB reverse signaling triggers spine and synapse formation.
Figure 4: Eph/ephrin signaling mediates long-term synaptic plasticity via different mechanisms.

References

  1. 1

    Yamada, S. & Nelson, W.J. Synapses: sites of cell recognition, adhesion and functional specification. Annu. Rev. Biochem. 76, 267–294 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Pasquale, E.B. Eph-ephrin bidirectional signaling in physiology and disease. Cell 133, 38–52 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Egea, J. & Klein, R. Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol. 17, 230–238 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Flanagan, J.G. Neural map specification by gradients. Curr. Opin. Neurobiol. 16, 59–66 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Bourne, J.N. & Harris, K.M. Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47–67 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Henkemeyer, M., Itkis, O.S., Ngo, M., Hickmott, P.W. & Ethell, I.M. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J. Cell Biol. 163, 1313–1326 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Kayser, M.S., McClelland, A.C., Hughes, E.G. & Dalva, M.B. Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. J. Neurosci. 26, 12152–12164 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Kayser, M.S., Nolt, M.J. & Dalva, M.B. EphB receptors couple dendritic filopodia motility to synapse formation. Neuron 59, 56–69 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Irie, F. & Yamaguchi, Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nat. Neurosci. 5, 1117–1118 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Penzes, P. et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Moeller, M.L., Shi, Y., Reichardt, L.F. & Ethell, I.M. EphB receptors regulate dendritic spine morphogenesis through the recruitment/phosphorylation of focal adhesion kinase and RhoA activation. J. Biol. Chem. 281, 1587–1598 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Dalva, M.B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Takasu, M.A., Dalva, M.B., Zigmond, R.E. & Greenberg, M.E. Modulation of NMDA receptor–dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Tolias, K.F. et al. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45, 525–538 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Tolias, K.F. et al. The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor–dependent dendritic spine development. Proc. Natl. Acad. Sci. USA 104, 7265–7270 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y. & Pasquale, E.B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6, 153–160 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Tremblay, M.E. et al. Localization of EphA4 in axon terminals and dendritic spines of adult rat hippocampus. J. Comp. Neurol. 501, 691–702 (2007).

    Article  Google Scholar 

  19. 19

    Fu, W.Y. et al. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat. Neurosci. 10, 67–76 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Sahin, M. et al. Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46, 191–204 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Bourgin, C., Murai, K.K., Richter, M. & Pasquale, E.B. The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J. Cell Biol. 178, 1295–1307 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Richter, M., Murai, K.K., Bourgin, C., Pak, D.T. & Pasquale, E.B. The EphA4 receptor regulates neuronal morphology through SPAR-mediated inactivation of Rap GTPases. J. Neurosci. 27, 14205–14215 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Zhou, L. et al. EphA4 signaling regulates phospholipase Cgamma1 activation, cofilin membrane association and dendritic spine morphology. J. Neurosci. 27, 5127–5138 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Lim, B.K., Matsuda, N. & Poo, M.M. Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo. Nat. Neurosci. 11, 160–169 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Bouzioukh, F. et al. Tyrosine phosphorylation sites in ephrinB2 are required for hippocampal long-term potentiation, but not long-term depression. J. Neurosci. 27, 11279–11288 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Grunwald, I.C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nat. Neurosci. 7, 33–40 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Segura, I., Essmann, C.L., Weinges, S. & Acker-Palmer, A. Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nat. Neurosci. 10, 301–310 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Aoto, J. et al. Postsynaptic ephrinB3 promotes shaft glutamatergic synapse formation. J. Neurosci. 27, 7508–7519 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Cowan, C.A. & Henkemeyer, M. The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174–179 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Grunwald, I.C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Henderson, J.T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Contractor, A. et al. Trans-synaptic Eph receptor–ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Ghosh, A. Neurobiology. Learning more about NMDA receptor regulation. Science 295, 449–451 (2002).

    Article  Google Scholar 

  34. 34

    Aoto, J. & Chen, L. Bidirectional ephrin/Eph signaling in synaptic functions. Brain Res. 1184, 72–80 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Liebl, D.J., Morris, C.J., Henkemeyer, M. & Parada, L.F. mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J. Neurosci. Res. 71, 7–22 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Palmer, A. et al. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol. Cell 9, 725–737 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19, 397–410 (2005).

    Article  Google Scholar 

  38. 38

    Lu, Y.M., Roder, J.C., Davidow, J. & Salter, M.W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363–1367 (1998).

    CAS  Article  Google Scholar 

  39. 39

    Rodenas-Ruano, A., Perez-Pinzon, M.A., Green, E.J., Henkemeyer, M. & Liebl, D.J. Distinct roles for ephrinB3 in the formation and function of hippocampal synapses. Dev. Biol. 292, 34–45 (2006).

    CAS  Article  Google Scholar 

  40. 40

    Armstrong, J.N. et al. B-ephrin reverse signaling is required for NMDA-independent long-term potentiation of mossy fibers in the hippocampus. J. Neurosci. 26, 3474–3481 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Deininger, K. et al. The Rab5 guanylate exchange factor Rin1 regulates endocytosis of the EphA4 receptor in mature excitatory neurons. Proc. Natl. Acad. Sci. USA 105, 12539–12544 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Cowan, C.W. et al. Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron 46, 205–217 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Essmann, C.L. et al. Serine phosphorylation of ephrinB2 regulates trafficking of synaptic AMPA receptors. Nat. Neurosci. 11, 1035–1043 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Lauterbach, J. & Klein, R. Release of full-length EphB2 receptors from hippocampal neurons to cocultured glial cells. J. Neurosci. 26, 11575–11581 (2006).

    CAS  Article  Google Scholar 

  45. 45

    Nishida, H. & Okabe, S. Direct astrocytic contacts regulate local maturation of dendritic spines. J. Neurosci. 27, 331–340 (2007).

    CAS  Article  Google Scholar 

  46. 46

    Nestor, M.W., Mok, L.P., Tulapurkar, M.E. & Thompson, S.M. Plasticity of neuron-glial interactions mediated by astrocytic EphARs. J. Neurosci. 27, 12817–12828 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Lim, Y.S. et al. p75(NTR) mediates ephrin-A reverse signaling required for axon repulsion and mapping. Neuron 59, 746–758 (2008).

    CAS  Article  Google Scholar 

  48. 48

    Zagrebelsky, M. et al. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J. Neurosci. 25, 9989–9999 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I'd like to thank K. Deininger, S. Paixão and A. Filosa for critical reading of the manuscript, and R. Schorner and C. Erlacher for help with the figures.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Klein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klein, R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 12, 15–20 (2009). https://doi.org/10.1038/nn.2231

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing