Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans

Abstract

Egg-laying behavior of the Caenorhabditis elegans hermaphrodite is regulated by G protein signaling pathways. Here we show that the egg laying–defective mutant egl-6(n592) carries an activating mutation in a G protein–coupled receptor that inhibits C. elegans egg-laying motor neurons in a Go-dependent manner. Ligands for EGL-6 are Phe-Met-Arg-Phe-NH2 (FMRFamide)-related peptides encoded by the genes flp-10 and flp-17. flp-10 is expressed in both neurons and non-neuronal cells. The major source of flp-17 peptides is a pair of presumptive sensory neurons, the BAG neurons. Genetic analysis of the egl-6 pathway revealed that the EGL-6 neuropeptide signaling pathway functions redundantly with acetylcholine to inhibit egg-laying. The retention of embryos in the uterus of the C. elegans hermaphrodite is therefore under the control of a presumptive sensory system and is inhibited by the convergence of signals from neuropeptides and the small-molecule neurotransmitter acetylcholine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: egl-6 encodes two isoforms of a seven-pass transmembrane receptor.
Figure 2: egl-6(gf) inhibition of egg-laying requires Go signaling.
Figure 3: egl-6 expression in the HSN motor neurons inhibits egg-laying.
Figure 4: flp-10 and flp-17 encode ligands for the EGL-6 receptor.
Figure 5: The EGL-6 receptor is regulated by flp-10 and flp-17 in vivo.
Figure 6: flp-10 and flp-17 are expressed in different cells.
Figure 7: The BAG sensory neurons inhibit egg-laying.
Figure 8: EGL-6 signaling inhibits egg-laying behavior redundantly with acetylcholine.

Similar content being viewed by others

References

  1. Horvitz, H.R., Chalfie, M., Trent, C., Sulston, J.E. & Evans, P.D. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216, 1012–1014 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Trent, C., Tsung, N. & Horvitz, H.R. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104, 619–647 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  4. Rand, J.B. & Nonet, M.L. Neurotransmitter assignments for specific neurons. in C. elegans II (eds. Riddle, D.L., Blumenthal, T., Meyer, B.J. & Priess, J.R.) 1049–1052 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).

    Google Scholar 

  5. Duerr, J.S., Gaskin, J. & Rand, J.B. Identified neurons in C. elegans coexpress vesicular transporters for acetylcholine and monoamines. Am. J. Physiol. Cell Physiol. 280, C1616–C1622 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Waggoner, L.E., Zhou, G.T., Schafer, R.W. & Schafer, W.R. Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron 21, 203–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Bany, I.A., Dong, M.Q. & Koelle, M.R. Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. J. Neurosci. 23, 8060–8069 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mendel, J.E. et al. Participation of the protein Go in multiple aspects of behavior in C. elegans. Science 267, 1652–1655 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Segalat, L., Elkes, D.A. & Kaplan, J.M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science 267, 1648–1651 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Brundage, L. et al. Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. Neuron 16, 999–1009 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lackner, M.R., Nurrish, S.J. & Kaplan, J.M. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24, 335–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Miller, K.G., Emerson, M.D. & Rand, J.B. Goα and diacylglycerol kinase negatively regulate the Gqα pathway in C. elegans. Neuron 24, 323–333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nurrish, S., Segalat, L. & Kaplan, J.M. Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron 24, 231–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Carnell, L., Illi, J., Hong, S.W. & McIntire, S.L. The G-protein-coupled serotonin receptor SER-1 regulates egg laying and male mating behaviors in Caenorhabditis elegans. J. Neurosci. 25, 10671–10681 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hobson, R.J. et al. SER-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying. Genetics 172, 159–169 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shyn, S.I., Kerr, R. & Schafer, W.R. Serotonin and Go modulate functional states of neurons and muscles controlling C. elegans egg-laying behavior. Curr. Biol. 13, 1910–1915 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Kass, J., Jacob, T.J., Kim, P. & Kaplan, J.M. The EGL-3 prohormone convertase regulates mechanosensory responses of Caenorhabditis elegans. J. Neurosci. 21, 9265–9272 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jacob, T.C. & Kaplan, J.M. The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. J. Neurosci. 23, 2122–2130 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moresco, J.J. & Koelle, M.R. Activation of EGL-47, a Galpha(o)-coupled receptor, inhibits function of hermaphrodite-specific motor neurons to regulate Caenorhabditis elegans egg-laying behavior. J. Neurosci. 24, 8522–8530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Sze, J.Y., Victor, M., Loer, C., Shi, Y. & Ruvkun, G. Food and metabolic signaling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403, 560–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Cazzamali, G. & Grimmelikhuijzen, C.J. Molecular cloning and functional expression of the first insect FMRFamide receptor. Proc. Natl. Acad. Sci. USA 99, 12073–12078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meeusen, T. et al. Identification in Drosophila melanogaster of the invertebrate G protein-coupled FMRFamide receptor. Proc. Natl. Acad. Sci. USA 99, 15363–15368 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, C. The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 131 Suppl: S109–S127 (2005).

    CAS  PubMed  Google Scholar 

  26. Nathoo, A.N., Moeller, R.A., Westlund, B.A. & Hart, A.C. Identification of neuropeptide-like gene families in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 98, 14000–14005 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rogers, C. et al. Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat. Neurosci. 6, 1178–1185 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, K. & Li, C. Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J. Comp. Neurol. 475, 540–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Jin, Y., Jorgensen, E., Hartwieg, E. & Horvitz, H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J. Neurosci. 19, 539–548 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sulston, J., Dew, M. & Brenner, S. Dopaminergic neurons in the nematode C. elegans. J. Comp. Neurol. 163, 215–226 (1975).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, R.Y., Sawin, E.R., Chalfie, M., Horvitz, H.R. & Avery, L. EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J. Neurosci. 19, 159–167 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alkema, M.J., Hunter-Ensor, M., Ringstad, N. & Horvitz, H.R. Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46, 247–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Alfonso, A., Grundahl, K., Duerr, J.S., Han, H.P. & Rand, J.B. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 261, 617–619 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Alfonso, A., Grundahl, K., McManus, J.R. & Rand, J.B. Cloning and characterization of the choline acetyltransferase structural gene (cha-1) from C. elegans. J. Neurosci. 14, 2290–2300 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rand, J.B. Genetic analysis of the cha-1-unc-17 gene complex in Caenorhabditis. Genetics 122, 73–80 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Culotti, J.G., Von Ehrenstein, G., Culotti, M.R. & Russell, R.L. A second class of acetylcholinesterase-deficient mutants of the nematode Caenorhabditis elegans. Genetics 97, 281–305 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ward, S., Thomson, N., White, J.G. & Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 160, 313–337 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. Ware, R.W., Clark, D., Crossland, K. & Russell, R.L. The nerve ring of the nematode Caenorhabditis elegans: sensory input and motor output. J. Comp. Neurol. 162, 71–110 (1975).

    Article  Google Scholar 

  39. Jose, A.M., Bany, I.A., Chase, D.L. & Koelle, M.R. A specific subset of transient receptor potential vanilloid-type channel subunits in Caenorhabditis elegans endocrine cells function as mixed heteromers to promote neurotransmitter release. Genetics 175, 93–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, Y.S. et al. Characterization of GAR-2, a novel G protein-linked acetylcholine receptor from Caenorhabditis elegans. J. Neurochem. 75, 1800–1809 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Hwang, J.M. et al. Cloning and functional characterization of a Caenorhabditis elegans muscarinic acetylcholine receptor. Receptors Channels 6, 415–424 (1999).

    CAS  PubMed  Google Scholar 

  42. Lee, Y.S. et al. Cloning and expression of a G protein-linked acetylcholine receptor from Caenorhabditis elegans. J. Neurochem. 72, 58–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Putrenko, I., Zakikhani, M. & Dent, J.A. A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans. J. Biol. Chem. 280, 6392–6398 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Weinshenker, D., Garriga, G. & Thomas, J.H. Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J. Neurosci. 15, 6975–6985 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hallem, E.A. & Sternberg, P.W. Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 8038–8043 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H. & Plasterk, R.H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28, 160–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Jansen, G., Hazendonk, E., Thijssen, K.L. & Plasterk, R.H. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat. Genet. 17, 119–121 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Finney, M. & Ruvkun, G. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell 63, 895–905 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Liman, E.R., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9, 861–871 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL http://www.R-project.org (2006).

  51. Bargmann, C.I. & Avery, L. Laser killing of cells in Caenorhabditis elegans. Methods Cell Biol. 48, 225–250 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Kohara for flp-10 and flp-17 cDNAs; N. Dascal for GIRK1 and GIRK4 expression constructs; J. Rand for unc-17 cha-1 strains; J. Moresco and M. Koelle for tph-1 promoter constructs; A. Fire for expression vectors; A. Hellman, S. McGonagle, B. Castor and N. An for technical assistance; N. Abe and R. O'Hagan for help with Xenopus oocyte electrophysiology; J. Chung for help with data analysis; and B. Galvin and A. Saffer for critical reading of the manuscript. N.R. received support from the Howard Hughes Medical Institute, the Life Sciences Research Foundation and the Medical Foundation. H.R.H. is a David H. Koch Professor of Biology and an Investigator of the Howard Hughes Medical Institute. This work was supported by National Institutes of Health grant GM24663.

Author information

Authors and Affiliations

Authors

Contributions

N.R. performed all experiments. N.R. and H.R.H. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to H Robert Horvitz.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringstad, N., Horvitz, H. FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans. Nat Neurosci 11, 1168–1176 (2008). https://doi.org/10.1038/nn.2186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing