Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development

Abstract

In the developing CNS, subtypes of neurons and glial cells are generated according to a schedule that is defined by cell-intrinsic mechanisms that function at the progenitor-cell level. However, no critical molecular switch for the temporal specification of CNS progenitor cells has been identified. We found that chicken ovalbumin upstream promoter-transcription factor I and II (Coup-tfI and Coup-tfII, also known as Nr2f1 and Nr2f2) are required for the temporal specification of neural stem/progenitor cells (NSPCs), including their acquisition of gliogenic competence, as demonstrated by their responsiveness to gliogenic cytokines. COUP-TFI and II are transiently co-expressed in the ventricular zone of the early embryonic CNS. The double knockdown of Coup-tfI/II in embryonic stem cell (ESC)-derived NSPCs and the developing mouse forebrain caused sustained neurogenesis and the prolonged generation of early-born neurons. These findings reveal a part of the timer mechanisms for generating diverse types of neurons and glial cells during CNS development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coup-tfI/II double knockdown inhibits the neurogenic-to-gliogenic transition in vitro.
Figure 2: Coup-tfI/II knockdown phenotype is rescued by expression of knockdown-resistant mutant COUP-TFI/II.
Figure 3: Coup-tfI/II are required to free Gfap promoter from epigenetic silencing and to confer responsiveness to gliogenic cytokines.
Figure 4: Coup-tfI/II are involved in the temporal restriction of NSPC neuropotency.
Figure 5: Coup-tfI/II knockdown inhibits initiation of gliogenesis in developing forebrain.
Figure 6: Coup-tfI/II knockdown inhibits temporal specification of NSPCs in developing forebrain.
Figure 7: Transcriptional repressor function of Coup-tfI/II is required for temporal specification of NSPCs.

Similar content being viewed by others

References

  1. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  Google Scholar 

  2. Miller, F.D. & Gauthier, A.S. Timing is everything: making neurons versus glia in the developing cortex. Neuron 54, 357–369 (2007).

    Article  CAS  Google Scholar 

  3. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    Article  CAS  Google Scholar 

  4. Koblar, S.A. et al. Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proc. Natl. Acad. Sci. USA 95, 3178–3181 (1998).

    Article  CAS  Google Scholar 

  5. Nakashima, K. et al. Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation. J. Neurosci. 19, 5429–5434 (1999).

    Article  CAS  Google Scholar 

  6. Gross, R.E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    Article  CAS  Google Scholar 

  7. Nakashima, K. et al. BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc. Natl. Acad. Sci. USA 98, 5868–5873 (2001).

    Article  CAS  Google Scholar 

  8. Grandbarbe, L. et al. Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 130, 1391–1402 (2003).

    Article  CAS  Google Scholar 

  9. Nakashima, K. et al. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284, 479–482 (1999).

    Article  CAS  Google Scholar 

  10. Ge, W. et al. Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J. Neurosci. Res. 69, 848–860 (2002).

    Article  CAS  Google Scholar 

  11. Sun, Y. et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376 (2001).

    Article  CAS  Google Scholar 

  12. Tomita, K., Moriyoshi, K., Nakanishi, S., Guillemot, F. & Kageyama, R. Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J. 19, 5460–5472 (2000).

    Article  CAS  Google Scholar 

  13. Nieto, M., Schuurmans, C., Britz, O. & Guillemot, F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413 (2001).

    Article  CAS  Google Scholar 

  14. Gauthier, A.S. et al. Control of CNS cell-fate decisions by SHP-2 and its dysregulation in Noonan syndrome. Neuron 54, 245–262 (2007).

    Article  CAS  Google Scholar 

  15. Schmid, R.S. et al. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc. Natl. Acad. Sci. USA 100, 4251–4256 (2003).

    Article  CAS  Google Scholar 

  16. Sardi, S.P., Murtie, J., Koirala, S., Patten, B.A. & Corfas, G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127, 185–197 (2006).

    Article  CAS  Google Scholar 

  17. Song, M.R. & Ghosh, A. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat. Neurosci. 7, 229–235 (2004).

    Article  Google Scholar 

  18. Takizawa, T. et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 1, 749–758 (2001).

    Article  CAS  Google Scholar 

  19. Matsumoto, S. et al. Brg1 is required for murine neural stem cell maintenance and gliogenesis. Dev. Biol. 289, 372–383 (2006).

    Article  CAS  Google Scholar 

  20. Stolt, C.C. et al. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17, 1677–1689 (2003).

    Article  CAS  Google Scholar 

  21. Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006).

    Article  CAS  Google Scholar 

  22. Hanashima, C., Li, S.C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science 303, 56–59 (2004).

    Article  CAS  Google Scholar 

  23. Jacob, J. et al. Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis. Nat. Neurosci. 10, 1433–1439 (2007).

    Article  CAS  Google Scholar 

  24. Park, J.I., Tsai, S.Y. & Tsai, M.J. Molecular mechanism of chicken ovalbumin upstream promoter-transcription factor (COUP-TF) actions. Keio J. Med. 52, 174–181 (2003).

    Article  CAS  Google Scholar 

  25. Tripodi, M., Filosa, A., Armentano, M. & Studer, M. The COUP-TF nuclear receptors regulate cell migration in the mammalian basal forebrain. Development 131, 6119–6129 (2004).

    Article  CAS  Google Scholar 

  26. Armentano, M., Filosa, A., Andolfi, G. & Studer, M. COUP-TFI is required for the formation of commissural projections in the forebrain by regulating axonal growth. Development 133, 4151–4162 (2006).

    Article  CAS  Google Scholar 

  27. Armentano, M. et al. COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas. Nat. Neurosci. 10, 1277–1286 (2007).

    Article  CAS  Google Scholar 

  28. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  29. Surani, M.A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762 (2007).

    Article  CAS  Google Scholar 

  30. Qiu, Y. et al. Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon. Proc. Natl. Acad. Sci. USA 91, 4451–4455 (1994).

    Article  CAS  Google Scholar 

  31. Tsai, S.Y. & Tsai, M.J. Chick ovalbumin upstream promoter-transcription factors (COUP-TFs): coming of age. Endocr. Rev. 18, 229–240 (1997).

    PubMed  Google Scholar 

  32. Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signaling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351–355 (2007).

    Article  CAS  Google Scholar 

  33. Bonni, A. et al. Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278, 477–483 (1997).

    Article  CAS  Google Scholar 

  34. Stenman, J., Toresson, H. & Campbell, K. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23, 167–174 (2003).

    Article  CAS  Google Scholar 

  35. Wang, H.F. & Liu, F.C. Developmental restriction of the LIM homeodomain transcription factor Islet-1 expression to cholinergic neurons in the rat striatum. Neuroscience 103, 999–1016 (2001).

    Article  CAS  Google Scholar 

  36. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  Google Scholar 

  37. Petryniak, M.A., Potter, G.B., Rowitch, D.H. & Rubenstein, J.L. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55, 417–433 (2007).

    Article  CAS  Google Scholar 

  38. Olsson, M., Bjorklund, A. & Campbell, K. Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 84, 867–876 (1998).

    Article  CAS  Google Scholar 

  39. Hevner, R.F. et al. Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev. Neurosci. 25, 139–151 (2003).

    Article  CAS  Google Scholar 

  40. Pereira, F.A., Tsai, M.J. & Tsai, S.Y. COUP-TF orphan nuclear receptors in development and differentiation. Cell. Mol. Life Sci. 57, 1388–1398 (2000).

    Article  CAS  Google Scholar 

  41. Bailey, P., Sartorelli, V., Hamamori, Y. & Muscat, G.E. The orphan nuclear receptor, COUP-TF II, inhibits myogenesis by post-transcriptional regulation of MyoD function: COUP-TF II directly interacts with p300 and myoD. Nucleic Acids Res. 26, 5501–5510 (1998).

    Article  CAS  Google Scholar 

  42. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C.Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001).

    Article  CAS  Google Scholar 

  43. Kanai, M.I., Okabe, M. & Hiromi, Y. Seven-up controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. Dev. Cell 8, 203–213 (2005).

    Article  CAS  Google Scholar 

  44. Egger, B., Chell, J.M. & Brand, A.H. Insights into neural stem cell biology from flies. Phil. Trans. R. Soc. Lond. B 363, 39–56 (2008).

    Article  CAS  Google Scholar 

  45. Udolph, G., Rath, P. & Chia, W. A requirement for Notch in the genesis of a subset of glial cells in the Drosophila embryonic central nervous system which arise through asymmetric divisions. Development 128, 1457–1466 (2001).

    CAS  PubMed  Google Scholar 

  46. Okada, Y., Shimazaki, T., Sobue, G. & Okano, H. Retinoic-acid concentration–dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev. Biol. 275, 124–142 (2004).

    Article  CAS  Google Scholar 

  47. Shimazaki, T., Shingo, T. & Weiss, S. The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J. Neurosci. 21, 7642–7653 (2001).

    Article  CAS  Google Scholar 

  48. Miyoshi, H., Blomer, U., Takahashi, M., Gage, F.H. & Verma, I.M. Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150–8157 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang, X., Norman, M., Roth, L. & Li, X. Protein-DNA array-based identification of transcription factor activities regulated by interaction with the glucocorticoid receptor. J. Biol. Chem. 279, 38480–38485 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Miyoshi (Riken BioResource Center) for the lentivirus constructs, R.F. Hevner (University of Washington) for the antibody to Tbr1, S. Mitani (Tokyo Women's Medical University) for the antibody to GFP (mFX73) and K. Shimamura (Kumamoto University) for the Vp16 and Drosophila engrailed constructs. We also thank the members of the Okano laboratory for discussion, technical advice and/or critical reading of the manuscript. This study was supported by Core Research for Evolutional Science Technology/Solution-Oriented Research for Science and Technology–Japan Science and Technology Agency (H.O.), grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan (T.S. and H.O.), a grant-in-aid from the 21st Century Center Of Excellence program of MEXT to Keio University, a Keio University grant-in-aid for encouragement of young medical scientists (H.N.), and a grant-in-aid for Japan Society for the Promotion of Science Fellows (H.N.).

Author information

Authors and Affiliations

Authors

Contributions

All experiments were designed by T.S. and H.N. T.S. guided the experimental processes. Most of the experiments and data analyses were carried out by H.N. Some parts of the in vitro culture assay and immunostaining were performed by S.N. S.N. also assisted with all the experiments. The project was supervised by T.S. and H.O.

Corresponding authors

Correspondence to Takuya Shimazaki or Hideyuki Okano.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 907 kb)

Supplementary Movie 1

Ectopically induced Tbr1-positive neurons by high-dose knockdown lentivirus infection showed abnormal multipolar morphology. Three-dimensional video image corresponding to Supplementary Fig. 6c. (MOV 8726 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naka, H., Nakamura, S., Shimazaki, T. et al. Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat Neurosci 11, 1014–1023 (2008). https://doi.org/10.1038/nn.2168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing