Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of binocular functional properties in a monocular neural circuit

Abstract

Sensory circuits frequently integrate converging inputs while maintaining precise functional relationships between them. For example, in mammals with stereopsis, neurons at the first stages of binocular visual processing show a close alignment of receptive-field properties for each eye. Still, basic questions about the global wiring mechanisms that enable this functional alignment remain unanswered, including whether the addition of a second retinal input to an otherwise monocular neural circuit is sufficient for the emergence of these binocular properties. We addressed this question by inducing a de novo binocular retinal projection to the larval zebrafish optic tectum and examining recipient neuronal populations using in vivo two-photon calcium imaging. Notably, neurons in rewired tecta were predominantly binocular and showed matching direction selectivity for each eye. We found that a model based on local inhibitory circuitry that computes direction selectivity using the topographic structure of both retinal inputs can account for the emergence of this binocular feature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional analysis of the rewired larval zebrafish retinotectal circuit.
Figure 2: Binocular functional integration in rewired tecta.
Figure 3: Tectal populations show equivalent functional retinotopy for each eye.
Figure 4: Binocular neurons show matching direction selectivity for each eye.
Figure 5: Tectal neurons show sequence selectivity to binocular apparent motion.
Figure 6: Tectal direction selectivity requires local inhibition.

Similar content being viewed by others

References

  1. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Maske, R., Yamane, S. & Bishop, P.O. Binocular simple cells for local stereopsis: comparison of receptive field organizations for the two eyes. Vision Res. 24, 1921–1929 (1984).

    Article  CAS  Google Scholar 

  3. Sterling, P. & Wickelgren, B.G. Visual receptive fields in the superior colliculus of the cat. J. Neurophysiol. 32, 1–15 (1969).

    Article  CAS  Google Scholar 

  4. Ohzawa, I., DeAngelis, G.C. & Freeman, R.D. Encoding of binocular disparity by simple cells in the cat's visual cortex. J. Neurophysiol. 75, 1779–1805 (1996).

    Article  CAS  Google Scholar 

  5. Cynader, M. & Berman, N. Receptive-field organization of monkey superior colliculus. J. Neurophysiol. 35, 187–201 (1972).

    Article  CAS  Google Scholar 

  6. Drager, U.C. & Hubel, D.H. Physiology of visual cells in mouse superior colliculus and correlation with somatosensory and auditory input. Nature 253, 203–204 (1975).

    Article  CAS  Google Scholar 

  7. Stein, B.E., Magalhaes-Castro, B. & Kruger, L. Relationship between visual and tactile representations in cat superior colliculus. J. Neurophysiol. 39, 401–419 (1976).

    Article  CAS  Google Scholar 

  8. Wallace, M.T., Meredith, M.A. & Stein, B.E. Integration of multiple sensory modalities in cat cortex. Exp. Brain Res. 91, 484–488 (1992).

    Article  CAS  Google Scholar 

  9. Gödecke, I. & Bonhoeffer, T. Development of identical orientation maps for two eyes without common visual experience. Nature 379, 251–254 (1996).

    Article  Google Scholar 

  10. Blakemore, C., Van Sluyters, R.C., Peck, C.K. & Hein, A. Development of cat visual cortex following rotation of one eye. Nature 257, 584–586 (1975).

    Article  CAS  Google Scholar 

  11. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  12. Niell, C.M. & Smith, S.J. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron 45, 941–951 (2005).

    Article  CAS  Google Scholar 

  13. Law, M.I. & Constantine-Paton, M. Right and left eye bands in frogs with unilateral tectal ablations. Proc. Natl. Acad. Sci. USA 77, 2314–2318 (1980).

    Article  CAS  Google Scholar 

  14. Ruthazer, E.S., Akerman, C.J. & Cline, H.T. Control of axon branch dynamics by correlated activity in vivo. Science 301, 66–70 (2003).

    Article  CAS  Google Scholar 

  15. Constantine-Paton, M. & Law, M.I. Eye-specific termination bands in tecta of three-eyed frogs. Science 202, 639–641 (1978).

    Article  CAS  Google Scholar 

  16. Levine, R.L. & Jacobson, M. Discontinuous mapping of retina onto tectum innervated by both eyes. Brain Res. 98, 172–176 (1975).

    Article  CAS  Google Scholar 

  17. Udin, S.B. & Grant, S. Plasticity in the tectum of Xenopus laevis: binocular maps. Prog. Neurobiol. 59, 81–106 (1999).

    Article  CAS  Google Scholar 

  18. Crair, M.C., Gillespie, D.C. & Stryker, M.P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).

    Article  CAS  Google Scholar 

  19. Hubel, D.H. & Wiesel, T.N. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28, 1041–1059 (1965).

    Article  CAS  Google Scholar 

  20. Katz, L.C. & Crowley, J.C. Development of cortical circuits: lessons from ocular dominance columns. Nat. Rev. Neurosci. 3, 34–42 (2002).

    Article  CAS  Google Scholar 

  21. Wong, R.O., Meister, M. & Shatz, C.J. Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11, 923–938 (1993).

    Article  CAS  Google Scholar 

  22. Sharma, S.C. Anomalous retinal projection after removal of contralateral optic tectum in adult goldfish. Exp. Neurol. 41, 661–669 (1973).

    Article  CAS  Google Scholar 

  23. Livingstone, M.S. & Conway, B.R. Substructure of direction-selective receptive fields in macaque V1. J. Neurophysiol. 89, 2743–2759 (2003).

    Article  Google Scholar 

  24. Rao, R.P. & Sejnowski, T.J. Predictive learning of temporal sequences in recurrent neocortical circuits. Novartis Found. Symp. 239, 208–229 (2001).

    CAS  PubMed  Google Scholar 

  25. Engert, F., Tao, H.W., Zhang, L.I. & Poo, M.M. Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons. Nature 419, 470–475 (2002).

    Article  CAS  Google Scholar 

  26. Sajovic, P. & Levinthal, C. Inhibitory mechanism in zebrafish optic tectum: visual response properties of tectal cells altered by picrotoxin and bicuculline. Brain Res. 271, 227–240 (1983).

    Article  CAS  Google Scholar 

  27. Higashijima, S., Mandel, G. & Fetcho, J.R. Distribution of prospective glutamatergic, glycinergic and GABAergic neurons in embryonic and larval zebrafish. J. Comp. Neurol. 480, 1–18 (2004).

    Article  CAS  Google Scholar 

  28. Barlow, H.B. & Levick, W.R. The mechanism of directionally selective units in rabbit's retina. J. Physiol. (Lond.) 178, 477–504 (1965).

    Article  CAS  Google Scholar 

  29. Wartzok, D. & Marks, W.B. Directionally selective visual units recorded in optic tectum of the goldfish. J. Neurophysiol. 36, 588–604 (1973).

    Article  CAS  Google Scholar 

  30. Kim, I.J., Zhang, Y., Yamagata, M., Meister, M. & Sanes, J.R. Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478–482 (2008).

    Article  CAS  Google Scholar 

  31. Newsome, W.T., Mikami, A. & Wurtz, R.H. Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion. J. Neurophysiol. 55, 1340–1351 (1986).

    Article  CAS  Google Scholar 

  32. Emerson, R.C. & Gerstein, G.L. Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. J. Neurophysiol. 40, 136–155 (1977).

    Article  CAS  Google Scholar 

  33. Stuermer, C.A., Rohrer, B. & Munz, H. Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade. J. Neurosci. 10, 3615–3626 (1990).

    Article  CAS  Google Scholar 

  34. Flanagan, J.G. Neural map specification by gradients. Curr. Opin. Neurobiol. 16, 59–66 (2006).

    Article  CAS  Google Scholar 

  35. Livingstone, M.S. Mechanisms of direction selectivity in macaque V1. Neuron 20, 509–526 (1998).

    Article  CAS  Google Scholar 

  36. Clifford, C.W. & Ibbotson, M.R. Fundamental mechanisms of visual motion detection: models, cells and functions. Prog. Neurobiol. 68, 409–437 (2002).

    Article  CAS  Google Scholar 

  37. Burrill, J.D. & Easter, S.S. Jr. Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). J. Comp. Neurol. 346, 583–600 (1994).

    Article  CAS  Google Scholar 

  38. Roeser, T. & Baier, H. Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum. J. Neurosci. 23, 3726–3734 (2003).

    Article  CAS  Google Scholar 

  39. White, L.E., Coppola, D.M. & Fitzpatrick, D. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411, 1049–1052 (2001).

    Article  CAS  Google Scholar 

  40. Knudsen, E.I. Dynamic space codes in the superior colliculus. Curr. Opin. Neurobiol. 1, 628–632 (1991).

    Article  CAS  Google Scholar 

  41. Sperry, R.W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703–710 (1963).

    Article  CAS  Google Scholar 

  42. Lambot, M.A., Depasse, F., Noel, J.C. & Vanderhaeghen, P. Mapping labels in the human developing visual system and the evolution of binocular vision. J. Neurosci. 25, 7232–7237 (2005).

    Article  CAS  Google Scholar 

  43. Knudsen, E.I., du Lac, S. & Esterly, S.D. Computational maps in the brain. Annu. Rev. Neurosci. 10, 41–65 (1987).

    Article  CAS  Google Scholar 

  44. Williams, S.E. et al. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39, 919–935 (2003).

    Article  CAS  Google Scholar 

  45. Lister, J.A., Robertson, C.P., Lepage, T., Johnson, S.L. & Raible, D.W. nacre encodes a zebrafish microphthalmia-related protein that regulates neural crest–derived pigment cell fate. Development 126, 3757–3767 (1999).

    CAS  PubMed  Google Scholar 

  46. Fricke, C., Lee, J.S., Geiger-Rudolph, S., Bonhoeffer, F. & Chien, C.B. astray, a zebrafish roundabout homolog required for retinal axon guidance. Science 292, 507–510 (2001).

    Article  CAS  Google Scholar 

  47. Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  48. Pelli, D.G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article  CAS  Google Scholar 

  49. Abramoff, M.D., Magelhaes, P.J. & Ram, S.J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  50. Drapeau, P., Ali, D.W., Buss, R.R. & Saint-Amant, L. In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish. J. Neurosci. Methods 88, 1–13 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to A. Kampff for help in microscope construction, J. Bollmann for a suggestion on microscope optimization and M. Orger for insightful discussions. The authors thank M. Livingstone, M. Meister, T. Bonhoeffer, J. Lichtman, V. Murthy, A. Schier, B. Olvecsky and members of the Engert laboratory for comments on the manuscript and helpful discussions. This work was supported by a National Science Foundation Predoctoral Fellowship, a National Science and Engineering Graduate Fellowship (P.R.), a US National Institutes of Health grant (R01 EY014429-01A2) and funding from the McKnight and Dana Foundations (F.E.).

Author information

Authors and Affiliations

Authors

Contributions

P.R. carried out the experiments and analyzed the data. P.R. and F.E. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Florian Engert.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 1696 kb)

Supplementary Video 1

Calcium imaging of binocular visually driven tectal population activity in a rewired larval zebrafish. Tectal neurons respond to visual stimulation with 3° moving spots shown to either the ipsilateral (left) or the contralateral (right) eye. Stimuli are shown schematically in the lower left corner. (AVI 32038 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramdya, P., Engert, F. Emergence of binocular functional properties in a monocular neural circuit. Nat Neurosci 11, 1083–1090 (2008). https://doi.org/10.1038/nn.2166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing