Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking

Abstract

Associative learning processes have an important role in the initiation and persistence of heroin-seeking. Here we show in a rat self-administration model that reexposure to cues previously associated with heroin results in downregulation of AMPA receptor subunit GluR2 and concomitant upregulation of clathrin-coat assembly protein AP2m1 in synaptic membranes of the medial prefrontal cortex (mPFC). Reduced AMPA receptor expression in synaptic membranes was associated with a decreased AMPA/NMDA current ratio and increased rectification index in mPFC pyramidal neurons. Systemic or ventral (but not dorsal) mPFC injections of a peptide inhibiting GluR2 endocytosis attenuated both the rectification index and cue-induced relapse to heroin-seeking, without affecting sucrose-seeking. We conclude that GluR2 receptor endocytosis and the resulting synaptic depression in ventral mPFC are crucial for cue-induced relapse to heroin-seeking. As reexposure to conditioned stimuli is a major cause for heroin relapse, inhibition of GluR2 endocytosis may provide a new target for the treatment of heroin addiction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Heroin acquisition and relapse.
Figure 2: Protein changes after cue-induced relapse to heroin-seeking.
Figure 3: Cue-induced heroin-seeking alters synaptic strength.
Figure 4: Blockade of GluR2 endocytosis attenuates cue-induced heroin-seeking.
Figure 5: TAT-GluR23Y does not impair relapse to sucrose-seeking.

References

  1. 1

    O'Brien, C.P., Ehrman, R.N. & Ternes, J.W. Classical Conditioning in Human Opioid Dependence 329–356 (Academic Press, Orlando, 1986).

    Google Scholar 

  2. 2

    Everitt, B.J. & Wolf, M.E. Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci. 22, 3312–3320 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Ungless, M.A., Whistler, J.L., Malenka, R.C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Thomas, M.J., Beurrier, C., Bonci, A. & Malenka, R.C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci. 4, 1217–1223 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Martin, M., Chen, B.T., Hopf, F.W., Bowers, M.S. & Bonci, A. Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nat. Neurosci. 9, 868–869 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Chklovskii, D.B., Mel, B.W. & Svoboda, K. Cortical rewiring and information storage. Nature 431, 782–788 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Wikler, A. Dynamics of drug dependence. Implications of a conditioning theory for research and treatment. Arch. Gen. Psychiatry 28, 611–616 (1973).

    CAS  Article  Google Scholar 

  8. 8

    Koya, E. et al. Enhanced cortical and accumbal molecular reactivity associated with conditioned heroin, but not sucrose-seeking behaviour. J. Neurochem. 98, 905–915 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Schmidt, E.D., Voorn, P., Binnekade, R., Schoffelmeer, A.N. & De Vries, T.J. Differential involvement of the prelimbic cortex and striatum in conditioned heroin and sucrose seeking following long-term extinction. Eur. J. Neurosci. 22, 2347–2356 (2005).

    Article  Google Scholar 

  10. 10

    Epstein, D.H., Preston, K.L., Stewart, J. & Shaham, Y. Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl.) 189, 1–16 (2006).

    CAS  Article  Google Scholar 

  11. 11

    McLaughlin, J. & See, R.E. Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology (Berl.) 168, 57–65 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Kalivas, P.W., Volkow, N. & Seamans, J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45, 647–650 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Hu, J. et al. Optimized proteomic analysis of a mouse model of cerebellar dysfunction using amine-specific isobaric tags. Proteomics 6, 4321–4334 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Liu, T. et al. A multiplexed proteomics approach to differentiate neurite outgrowth patterns. J. Neurosci. Methods 158, 22–29 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Li, K.W. et al. Quantitative proteomics and protein network analysis of hippocampal synapses of CaMKIIα mutant mice. J. Proteome Res. 6, 3127–3133 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Man, H.Y. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Kastning, K. et al. Molecular determinants for the interaction between AMPA receptors and the clathrin adaptor complex AP-2. Proc. Natl. Acad. Sci. USA 104, 2991–2996 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Lee, S.H., Liu, L., Wang, Y.T. & Sheng, M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36, 661–674 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Mierau, S.B., Meredith, R.M., Upton, A.L. & Paulsen, O. Dissociation of experience-dependent and -independent changes in excitatory synaptic transmission during development of barrel cortex. Proc. Natl. Acad. Sci. USA 101, 15518–15523 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Myme, C.I., Sugino, K., Turrigiano, G.G. & Nelson, S.B. The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. J. Neurophysiol. 90, 771–779 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Saal, D., Dong, Y., Bonci, A. & Malenka, R.C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37, 577–582 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Hayashi, T. & Huganir, R.L. Tyrosine phosphorylation and regulation of the AMPA receptor by SRC family tyrosine kinases. J. Neurosci. 24, 6152–6160 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Ahmadian, G. et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 23, 1040–1050 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Verdoorn, T.A., Burnashev, N., Monyer, H., Seeburg, P.H. & Sakmann, B. Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252, 1715–1718 (1991).

    CAS  Article  Google Scholar 

  26. 26

    Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Hyman, S.E. Addiction: a disease of learning and memory. Am. J. Psychiatry 162, 1414–1422 (2005).

    Article  Google Scholar 

  29. 29

    Kelley, A.E. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44, 161–179 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Nestler, E.J. From neurobiology to treatment: progress against addiction. Nat. Neurosci. 5 Suppl: 1076–1079 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Mansvelder, H.D. & McGehee, D.S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27, 349–357 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Kourrich, S., Rothwell, P.E., Klug, J.R. & Thomas, M.J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci. 27, 7921–7928 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Rial Verde, E.M., Lee-Osbourne, J., Worley, P.F., Malinow, R. & Cline, H.T. Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474 (2006).

    Article  Google Scholar 

  35. 35

    McFarland, K., Davidge, S.B., Lapish, C.C. & Kalivas, P.W. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J. Neurosci. 24, 1551–1560 (2004).

    CAS  Article  Google Scholar 

  36. 36

    McFarland, K., Lapish, C.C. & Kalivas, P.W. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci. 23, 3531–3537 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Peters, J., LaLumiere, R.T. & Kalivas, P.W. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J. Neurosci. 28, 6046–6053 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Koya, E. et al. Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology, doi:10.1016/j.neuropharm.2008.04.022 (8 May 2008).

  39. 39

    Rogers, J.L., Ghee, S. & See, R.E. The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience 151, 579–588 (2008).

    CAS  Article  Google Scholar 

  40. 40

    LaLumiere, R.T. & Kalivas, P.W. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J. Neurosci. 28, 3170–3177 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Sesack, S.R., Deutch, A.Y., Roth, R.H. & Bunney, B.S. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol. 290, 213–242 (1989).

    CAS  Article  Google Scholar 

  42. 42

    Thierry, A.M., Stinus, L., Blanc, G. & Glowinski, J. Some evidence for the existence of dopaminergic neurons in the rat cortex. Brain Res. 50, 230–234 (1973).

    CAS  Article  Google Scholar 

  43. 43

    McDonald, A.J. Organization of amygdaloid projections to the mediodorsal thalamus and prefrontal cortex: a fluorescence retrograde transport study in the rat. J. Comp. Neurol. 262, 46–58 (1987).

    CAS  Article  Google Scholar 

  44. 44

    Heidbreder, C.A. & Groenewegen, H.J. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci. Biobehav. Rev. 27, 555–579 (2003).

    Article  Google Scholar 

  45. 45

    Fuchs, R.A. & See, R.E. Basolateral amygdala inactivation abolishes conditioned stimulus- and heroin-induced reinstatement of extinguished heroin-seeking behavior in rats. Psychopharmacology (Berl.) 160, 425–433 (2002).

    CAS  Article  Google Scholar 

  46. 46

    Bossert, J.M., Liu, S.Y., Lu, L. & Shaham, Y. A role of ventral tegmental area glutamate in contextual cue-induced relapse to heroin seeking. J. Neurosci. 24, 10726–10730 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Zhou, W. et al. Role of acetylcholine transmission in nucleus accumbens and ventral tegmental area in heroin-seeking induced by conditioned cues. Neuroscience 144, 1209–1218 (2007).

    CAS  Article  Google Scholar 

  48. 48

    Voorn, P., Vanderschuren, L.J., Groenewegen, H.J., Robbins, T.W. & Pennartz, C.M. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 27, 468–474 (2004).

    CAS  Article  Google Scholar 

  49. 49

    Bossert, J.M., Gray, S.M., Lu, L. & Shaham, Y. Activation of group II metabotropic glutamate receptors in the nucleus accumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology 31, 2197–2209 (2006).

    CAS  Article  Google Scholar 

  50. 50

    Couey, J.J. et al. Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron 54, 73–87 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank W. de Vries, H. Raasø, M. Stegeman and Y. Gouwenberg for technical assistance and Y. Shaham for valuable comments on the manuscript. This work was supported by grants from the Center for Medical Systems Biology (to M.C.V.d.O., S.S., R.C.V.d.S., K.W.L. and A.B.S.) and the Netherlands Organization for Scientific Research (to N.A.G. and H.D.M.).

Author information

Affiliations

Authors

Contributions

M.C.V.d.O. and N.A.G. contributed equally to this work. M.C.V.d.O., A.N.M.S., H.D.M., A.B.S., S.S. and T.J.D.V. designed the experiments. M.C.V.d.O. and R.B. executed the behavior experiments. M.C.V.d.O. and T.J.D.V. analyzed the behavioral data. M.C.V.d.O., K.W.L., R.C.V.d.S., R.B. and S.S. executed the molecular experiments. M.C.V.d.O. and S.S. analyzed the molecular data. N.A.G. executed the electrophysiology experiments. N.A.G. and H.D.M. analyzed the electrophysiology data. M.C.V.d.O., A.B.S., H.D.M., T.J.D.V. and S.S. wrote the manuscript.

Corresponding author

Correspondence to Sabine Spijker.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Table 1 and Supplementary Methods (PDF 633 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van den Oever, M., Goriounova, N., Wan Li, K. et al. Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nat Neurosci 11, 1053–1058 (2008). https://doi.org/10.1038/nn.2165

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing