Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Psychophysical and neurometric detection performance under stimulus uncertainty

This article has been updated

Abstract

Signal detection theoretical analyses of spike counts have revealed that some cortical neurons can exceed psychophysical sensitivity in cases where a sensory signal is specified exactly. It is not known whether this finding holds in the more natural situation where signal occurrence is temporally uncertain. We investigated the ability of rat barrel cortex neurons to detect faint and transient whisker deflections occurring at unspecified times. The progression from fully specified stimuli to temporal uncertainty degraded neuronal sensitivity such that it seems highly unlikely that single neurons can provide the basis for decoding uncertain perceptual events. However, modeling the sensitivity of neuronal pools on basis of spike timing precision across several neurons in an optimal encoding window of 25 ms showed that the subject's perceptual sensitivity could be based on the occurrence of coincident spikes from four to five neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral protocol and psychometric data.
Figure 2: Firing properties of barrel cortex neurons and comparison with slowly adapting trigeminal ganglion fibers.
Figure 3: Identification of optimal encoding windows.
Figure 4: Psychometric precision acts as upper bound for neurometric precision of barrel cortex neurons.
Figure 5: Barrel cortex single units fire low numbers of spikes in response to whisker deflections but may reach high sensitivities.
Figure 6: Monte Carlo procedure to estimate sensitivities of neuronal pools.
Figure 7: Comparison of simulated sensitivity of neuronal pools with that measured from the rat observers.

Similar content being viewed by others

Change history

  • 13 August 2008

    In the version of this article initially published online, the second sentence of the Figure 6 legend contained an incorrect number. The number should be 500 rather than 5,000. The error has been corrected in the print, PDF and HTML versions of this article.

References

  1. Barlow, H.B. & Levick, W.R. Three factors limiting the reliable detection of light by retinal ganglion cells of the cat. J. Physiol. (Lond.) 200, 1–24 (1969).

    Article  CAS  Google Scholar 

  2. Tanner, W.P. & Swets, J.A. A decision-making theory of visual detection. Psychol. Rev. 61, 401–409 (1954).

    Article  Google Scholar 

  3. Barlow, H.B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1, 371–394 (1972).

    Article  CAS  Google Scholar 

  4. Talbot, W.H., Darian-Smith, I., Kornhuber, H.H. & Mountcastle, V.B. The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J. Neurophysiol. 31, 301–334 (1968).

    Article  CAS  Google Scholar 

  5. Parker, A. & Hawken, M. Capabilities of monkey cortical cells in spatial-resolution tasks. J. Opt. Soc. Am. A 2, 1101–1114 (1985).

    Article  CAS  Google Scholar 

  6. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  7. Celebrini, S. & Newsome, W.T. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14, 4109–4124 (1994).

    Article  CAS  Google Scholar 

  8. Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  Google Scholar 

  9. Geisler, W.S. & Albrecht, D.G. Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Vis. Neurosci. 14, 897–919 (1997).

    Article  CAS  Google Scholar 

  10. Hernandez, A., Zainos, A. & Romo, R. Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc. Natl. Acad. Sci. USA 97, 6191–6196 (2000).

    Article  CAS  Google Scholar 

  11. de Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8, 1698–1703 (2005).

    Article  CAS  Google Scholar 

  12. Swets, J.A. Detection theory and psychophysics: a review. Psychometrika 26, 49–63 (1961).

    Article  CAS  Google Scholar 

  13. Purushothaman, G. & Bradley, D.C. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8, 99–106 (2005).

    Article  CAS  Google Scholar 

  14. Uka, T. & DeAngelis, G.C. Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J. Neurosci. 23, 3515–3530 (2003).

    Article  CAS  Google Scholar 

  15. Heuer, H.W. & Britten, K.H. Optic flow signals in extrastriate area MST: comparison of perceptual and neuronal sensitivity. J. Neurophysiol. 91, 1314–1326 (2004).

    Article  Google Scholar 

  16. Cohn, T.E. & Lasley, D.J. Detectability of a luminance increment: effect of spatial uncertainty. J. Opt. Soc. Am. 64, 1715–1719 (1974).

    Article  CAS  Google Scholar 

  17. Swets, J.A., Shipley, E.F., McKey, M.J. & Green, D.M. Multiple observations of signals in noise. J. Opt. Soc. Am. 31, 514–521 (1959).

    Google Scholar 

  18. Green, D.M. & Weber, D.L. Detection of temporally uncertain signals. J. Acoust. Soc. Am. 67, 1304–1311 (1980).

    Article  CAS  Google Scholar 

  19. Green, D.M. & Forrest, T.G. Temporal gaps in noise and sinusoids. J. Acoust. Soc. Am. 86, 961–970 (1989).

    Article  CAS  Google Scholar 

  20. Lasley, D.J. & Cohn, T. Detection of a luminance increment: effect of temporal uncertainty. J. Opt. Soc. Am. 71, 845–850 (1981).

    Article  CAS  Google Scholar 

  21. de Ruyter van Steveninck, R.R. & Bialek, W. Reliability and statistical efficiency in a blowfly movement-sensitive neuron. Phil. Trans. R. Soc. Lond. B 348, 321–340 (1995).

    Article  Google Scholar 

  22. Gibson, J.M. & Welker, W.I. Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens. Res. 1, 95–117 (1983).

    Article  CAS  Google Scholar 

  23. Stüttgen, M.C., Rüter, J. & Schwarz, C. Two psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents. J. Neurosci. 26, 7933–7941 (2006).

    Article  Google Scholar 

  24. Jazayeri, M. & Movshon, J.A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    Article  CAS  Google Scholar 

  25. Theunissen, F. & Miller, J.P. Temporal encoding in nervous systems: a rigorous definition. J. Comput. Neurosci. 2, 149–162 (1995).

    Article  CAS  Google Scholar 

  26. Mainen, Z.F. & Sejnowski, T.J. Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995).

    Article  CAS  Google Scholar 

  27. Hunter, J.D., Milton, J.G., Thomas, P.J. & Cowan, J.D. Resonance effect for neural spike time reliability. J. Neurophysiol. 80, 1427–1438 (1998).

    Article  CAS  Google Scholar 

  28. Shadlen, M.N. & Newsome, W.T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994).

    Article  CAS  Google Scholar 

  29. Ariav, G., Polsky, A. & Schiller, J. Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 7750–7758 (2003).

    Article  CAS  Google Scholar 

  30. de Kock, C.P.J., Bruno, R.M., Spors, H. & Sakmann, B. Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J. Physiol. (Lond.) 581, 139–154 (2007).

    Article  CAS  Google Scholar 

  31. Janssen, P. & Shadlen, M.N. A representation of the hazard rate of elapsed time in macaque area LIP. Nat. Neurosci. 8, 234–241 (2005).

    Article  CAS  Google Scholar 

  32. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    Article  CAS  Google Scholar 

  33. Houweling, A.R. & Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451, 65–68 (2008).

    Article  CAS  Google Scholar 

  34. de Lafuente, V. & Romo, R. Inaugural Article: Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proc. Natl. Acad. Sci. USA 103, 14266–14271 (2006).

    Article  CAS  Google Scholar 

  35. Hermle, T., Schwarz, C. & Bogdan, M. Employing ICA and SOM for spike sorting of multielectrode recordings from CNS. J. Physiol. (Paris) 98, 349–356 (2004).

    Article  Google Scholar 

  36. Mock, M., Butovas, S. & Schwarz, C. Functional unity of the ponto-cerebellum: evidence that intrapontine communication is mediated by a reciprocal loop with the cerebellar nuclei. J. Neurophysiol. 95, 3414–3425 (2006).

    Article  Google Scholar 

  37. Abeles, M. Quantification, smoothing, and confidence limits for single-units' histograms. J. Neurosci. Methods 5, 317–325 (1982).

    Article  CAS  Google Scholar 

  38. Simons, D.J. & Carvell, G.E. Thalamocortical response transformation in the rat vibrissa/barrel system. J. Neurophysiol. 61, 311–330 (1989).

    Article  CAS  Google Scholar 

  39. Stanislaw, H. & Todorov, N. Calculation of signal detection theory measures. Behav. Res. Methods Instrum. Comput. 31, 137–149 (1999).

    Article  CAS  Google Scholar 

  40. Barlow, H.B., Levick, W.R. & Yoon, M. Responses to single quanta of light in retinal ganglion cells of the cat. Vision Res. Suppl 3, 87–101 (1971).

  41. Cumming, G. & Finch, S. A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educ. Psychol. Meas. 61, 532–574 (2001).

    Article  Google Scholar 

  42. Lindley, D.V. Making Decisions. (John Wiley & Sons, New York, 1971).

  43. Michalski, A., Gerstein, G.L., Czarkowska, J. & Tarnecki, R. Interactions between cat striate cortex neurons. Exp. Brain Res. 51, 97–107 (1983).

    Article  CAS  Google Scholar 

  44. Ts'o, D.Y., Gilbert, C.D. & Wiesel, T.N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160–1170 (1986).

    Article  CAS  Google Scholar 

  45. Schwarz, C. & Bolz, J. Functional specificity of a long-range horizontal connection in cat visual cortex: a cross-correlation study. J. Neurosci. 11, 2995–3007 (1991).

    Article  CAS  Google Scholar 

  46. Bair, W., Zohary, E. & Newsome, W.T. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21, 1676–1697 (2001).

    Article  CAS  Google Scholar 

  47. Kohn, A. & Smith, M.A. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25, 3661–3673 (2005).

    Article  CAS  Google Scholar 

  48. Zohary, E., Shadlen, M.N. & Newsome, W.T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    Article  CAS  Google Scholar 

  49. Reich, D.S., Mechler, F. & Victor, J.D. Independent and redundant information in nearby cortical neurons. Science 294, 2566–2568 (2001).

    Article  CAS  Google Scholar 

  50. Vaadia, E. et al. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373, 515–518 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (SFB550 B11). M.C.S. was supported by a scholarship from the Studienstiftung des deutschen Volkes. We thank F. Jäkel and M. Bethge for helpful discussions concerning signal detection theory and design of the probabilistic model and U. Pascht for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.C.S. and C.S. designed the experiments; M.C.S. performed the experiments; M.C.S. and C.S. conducted data analyses and wrote the paper.

Corresponding author

Correspondence to Cornelius Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stüttgen, M., Schwarz, C. Psychophysical and neurometric detection performance under stimulus uncertainty. Nat Neurosci 11, 1091–1099 (2008). https://doi.org/10.1038/nn.2162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing