Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gating the pore of P2X receptor channels

Abstract

Three families of ligand-activated ion channels mediate synaptic communication between excitable cells in mammals. For pentameric channels related to nicotinic acetylcholine receptors and tetrameric channels such as glutamate receptors, the pore-forming and gate regions have been studied extensively. In contrast, little is known about the structure of trimeric P2X receptor channels, a family of channels that are activated by ATP and are important in neuronal signaling, pain transmission and inflammation. To identify the pore-forming and gate regions in P2X receptor channels, we introduced cysteine residues throughout the two transmembrane (TM) segments and studied their accessibility to thiol-reactive compounds and ions. Our results show that TM2 lines the central ion-conduction pore, TM1 is positioned peripheral to TM2 and the flow of ions is minimized in the closed state by a gate formed by the external region of TM2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmembrane segments in P2X receptor channels.
Figure 2: State-dependent accessibility of extracellular MTSET in P2X2 receptor channels.
Figure 3: State-dependent accessibility of extracellular Ag+ in P2X2 receptor channels.
Figure 4: Stable coordination of Cd2+ at T336C.
Figure 5: Architecture of the pore of P2X receptor channels.

Similar content being viewed by others

References

  1. Khakh, B.S. & North, R.A. P2X receptors as cell-surface ATP sensors in health and disease. Nature 442, 527–532 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. North, R.A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Nicke, A. et al. P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J. 17, 3016–3028 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stoop, R. et al. Contribution of individual subunits to the multimeric P2X2 receptor: estimates based on methanethiosulfonate block at T336C. Mol. Pharmacol. 56, 973–981 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, L.H. et al. Subunit arrangement in P2X receptors. J. Neurosci. 23, 8903–8910 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aschrafi, A., Sadtler, S., Niculescu, C., Rettinger, J. & Schmalzing, G. Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J. Mol. Biol. 342, 333–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Barrera, N.P., Ormond, S.J., Henderson, R.M., Murrell-Lagnado, R.D. & Edwardson, J.M. Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers, but that P2X6 receptor subunits do not oligomerize. J. Biol. Chem. 280, 10759–10765 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Evans, R.J. Orthosteric and allosteric binding sites of P2X receptors. Eur. Biophys. J. published online, doi: 10.1007/s00249-008-0275-2 (5 February 2008).

  9. Silberberg, S.D., Chang, T.H. & Swartz, K.J. Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels. J. Gen. Physiol. 125, 347–359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Z., Migita, K., Samways, D.S., Voigt, M.M. & Egan, T.M. Gain and loss of channel function by alanine substitutions in the transmembrane segments of the rat ATP-gated P2X2 receptor. J. Neurosci. 24, 7378–7386 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holmgren, M., Liu, Y., Xu, Y. & Yellen, G. On the use of thiol-modifying agents to determine channel topology. Neuropharmacology 35, 797–804 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y., Holmgren, M., Jurman, M.E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).

    Article  PubMed  Google Scholar 

  13. del Camino, D. & Yellen, G. Tight steric closure at the intracellular activation gate of a voltage- gated K+ channel. Neuron 32, 649–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Haines, W.R., Voigt, M.M., Migita, K., Torres, G.E. & Egan, T.M. On the contribution of the first transmembrane domain to whole-cell current through an ATP-gated ionotropic P2X receptor. J. Neurosci. 21, 5885–5892 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Egan, T.M., Haines, W.R. & Voigt, M.M. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J. Neurosci. 18, 2350–2359 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rassendren, F., Buell, G., Newbolt, A., North, R.A. & Surprenant, A. Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J. 16, 3446–3454 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, L.H., Rassendren, F., Spelta, V., Surprenant, A. & North, R.A. Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X2 receptor. J. Biol. Chem. 276, 14902–14908 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Ennion, S.J. & Evans, R.J. Conserved cysteine residues in the extracellular loop of the human P2X1 receptor form disulfide bonds and are involved in receptor trafficking to the cell surface. Mol. Pharmacol. 61, 303–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Clyne, J.D., Wang, L.F. & Hume, R.I. Mutational analysis of the conserved cysteines of the rat P2X2 purinoceptor. J. Neurosci. 22, 3873–3880 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silberberg, S.D., Li, M. & Swartz, K.J. Ivermectin interaction with transmembrane helices reveals widespread rearrangements during opening of P2X receptor channels. Neuron 54, 263–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Stauffer, D.A. & Karlin, A. Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochemistry 33, 6840–6849 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Armstrong, C.M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Armstrong, C.M. Ionic pores, gates and gating currents. Q. Rev. Biophys. 7, 179–210 (1974).

    Article  CAS  PubMed  Google Scholar 

  24. Choi, K.L., Mossman, C., Aube, J. & Yellen, G. The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron 10, 533–541 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Cao, L., Young, M.T., Broomhead, H.E., Fountain, S.J. & North, R.A. Thr339-to-serine substitution in rat P2X2 receptor second transmembrane domain causes constitutive opening and indicates a gating role for Lys308. J. Neurosci. 27, 12916–12923 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Flynn, G.E. & Zagotta, W.N. Conformational changes in S6 coupled to the opening of cyclic nucleotide–gated channels. Neuron 30, 689–698 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Contreras, J.E., Srikumar, D. & Holmgren, M. Gating at the selectivity filter in cyclic nucleotide–gated channels. Proc. Natl. Acad. Sci. USA 105, 3310–3314 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu, Q. & Miller, C. Silver as a probe of pore-forming residues in a potassium channel. Science 268, 304–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Jasti, J., Furukawa, H., Gonzales, E.B. & Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9-Å resolution and low pH. Nature 449, 316–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Migita, K., Haines, W.R., Voigt, M.M. & Egan, T.M. Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X2 receptor. J. Biol. Chem. 276, 30934–30941 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Egan, T.M. & Khakh, B.S. Contribution of calcium ions to P2X channel responses. J. Neurosci. 24, 3413–3420 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0-Å resolution. Nature 414, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Brake, A.J., Wagenbach, M.J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Contreras and M. Holmgren for extensive advice in using the thiol-reactive compounds described in this study. We also thank M. Holmgren, J. Mindell and members of the Swartz lab for helpful discussions, and the US National Institute of Neurological Disorders and Stroke DNA sequencing facility for DNA sequencing. This work was supported by the Intramural Research Program of the US National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shai D Silberberg or Kenton J Swartz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Table 1 (PDF 1058 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Chang, TH., Silberberg, S. et al. Gating the pore of P2X receptor channels. Nat Neurosci 11, 883–887 (2008). https://doi.org/10.1038/nn.2151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing