Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drosophila TRPA channel modulates sugar-stimulated neural excitation, avoidance and social response

Abstract

Drosophila melanogaster postfeeding larvae show food-averse migration toward food-free habitats before metamorphosis. This developmental switching from food attraction to aversion is regulated by a neuropeptide Y (NPY)-related brain signaling peptide. We used the fly larva model to delineate the neurobiological basis of age-restricted response to environmental stimuli. Here we provide evidence for a fructose-responsive chemosensory pathway that modulates food-averse migratory and social behaviors. We found that fructose potently elicited larval food-averse behaviors, and painless (pain), a transient receptor potential channel that is responsive to noxious stimuli, was required for the fructose response. A subset of pain-expressing sensory neurons have been identified that show pain-dependent excitation by fructose. Although evolutionarily conserved avoidance mechanisms are widely appreciated for their roles in stress coping and survival, their biological importance in animal physiology and development remains unknown. Our findings demonstrate how an avoidance mechanism is recruited to facilitate animal development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral procedures for larval response to aversive food chemicals.
Figure 2: pain is involved in larval aversion to fruit juice and fructose.
Figure 3: Conditional disruption of pain-expressing neuronal signaling attenuates larval food aversion.
Figure 4: Larvae expressing a mammalian vanilloid receptor show capsaicin-averse behaviors.
Figure 5: Imaging and SOARS analysis of excitation of thoracic PAIN neurons by fructose with the cameleon Ca2+ indicator.
Figure 6: Ablation of fructose-responsive PAIN-expressing neurons in the thoracic segments disrupts larval food aversion.

Similar content being viewed by others

References

  1. Sokolowski, M.B. NPY and the regulation of behavioral development. Neuron 39, 6–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Bolhuis, J.J. & Gahr, M. Neural mechanisms of birdsong memory. Nat. Rev. Neurosci. 7, 347–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, Q. et al. Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39, 147–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Chiang, H.C.H.A.G. An analytical study of population growth in Drosophila melanogaster. Ecol. Monogr. 20, 173–206 (1950).

    Article  Google Scholar 

  5. Ashburner, M. Drosophila (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

  6. Thorsell, A. & Heilig, M. Diverse functions of neuropeptide Y revealed using genetically modified animals. Neuropeptides 36, 182–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Brumovsky, P., Shi, T.S., Landry, M., Villar, M.J. & Hokfelt, T. Neuropeptide tyrosine and pain. Trends Pharmacol. Sci. 28, 93–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. McVeigh, P., Kimber, M.J., Novozhilova, E. & Day, T.A. Neuropeptide signaling systems in flatworms. Parasitology 131, Suppl, S41–S55 (2005).

    Google Scholar 

  9. Brown, M.R. et al. Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20, 1035–1042 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Larhammar, D. Evolution of neuropeptide Y, peptide YY and pancreatic polypeptide. Regul. Pept. 62, 1–11 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Shen, P. & Cai, H.N. Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food. J. Neurobiol. 47, 16–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Montell, C. Drosophila TRP channels. Pflugers Arch. 451, 19–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell 108, 595–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Moran, M.M., Xu, H. & Clapham, D.E. TRP ion channels in the nervous system. Curr. Opin. Neurobiol. 14, 362–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Ramsey, I.S., Delling, M. & Clapham, D.E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Caterina, M.J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Tracey, W.D., Jr., Wilson, R.I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell 113, 261–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Thomas, D. Predation on the soil inhabiting stages of the Mexican fruit fly. Southwest. Entomol. 20, 61–71 (1995).

    Google Scholar 

  20. Alyokhin, A., Mille, C., Messing, R. & Duan, J. Selection of pupation habitats by oriental fruit fly larvae in the laboratory. J. Insect Behav. 14, 57–67 (2001).

    Article  Google Scholar 

  21. Kitamoto, T. Targeted expression of temperature-sensitive dynamin to study neural mechanisms of complex behavior in Drosophila. J. Neurogenet. 16, 205–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Tobin, D. et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35, 307–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Cohen, B., Wimmer, E.A. & Cohen, S.M. Early development of leg and wing primordia in the Drosophila embryo. Mech. Dev. 33, 229–240 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Lakes-Harlan, R., Pollack, G.S. & Merritt, D.J. From embryo to adult: anatomy and development of a leg sensory organ in Phormia regina Meigen (Insecta: Diptera). I. Anatomy and physiology of a larval “leg” sensory organ. J. Comp. Neurol. 308, 188–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, L., Yermolaieva, O., Johnson, W.A., Abboud, F.M. & Welsh, M.J. Identification and function of thermosensory neurons in Drosophila larvae. Nat. Neurosci. 6, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Ji, R.R., Zhang, X., Wiesenfeld-Hallin, Z. & Hokfelt, T. Expression of neuropeptide Y and neuropeptide Y (Y1) receptor mRNA in rat spinal cord and dorsal root ganglia following peripheral tissue inflammation. J. Neurosci. 14, 6423–6434 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Al-Anzi, B., Tracey, W.D., Jr. & Benzer, S. Response of Drosophila to wasabi is mediated by painless, the fly homolog of mammalian TRPA1/ANKTM1. Curr. Biol. 16, 1034–1040 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Heilig, M. The NPY system in stress, anxiety and depression. Neuropeptides 38, 213–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Greco, B. & Carli, M. Reduced attention and increased impulsivity in mice lacking NPY Y2 receptors: relation to anxiolytic-like phenotype. Behav. Brain Res. 169, 325–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Tatemoto, K. Neuropeptide Y: history and overview. Handb. Exp. Pharmacol. 162, 1–21 (2004).

    Article  CAS  Google Scholar 

  32. Li, J.-J., Zhou, X. & Yu, L.-C. Involvement of neuropeptide Y and Y1 receptor in antinociception in the arcuate nucleus of hypothalamus, an immunohistochemical and pharmacological study in intact rats and rats with inflammation. Pain 118, 232–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Naveilhan, P. et al. Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor. Nature 409, 513–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Gibbs, J., Flores, C.M. & Hargreaves, K.M. Neuropeptide Y inhibits capsaicin-sensitive nociceptors via a Y1 receptor–mediated mechanism. Neuroscience 125, 703–709 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Roberts, D.B. Drosophila: A Practical Approach (IRL Press, Washington, D.C., 1986).

    Google Scholar 

  36. Wen, T., Parrish, C.A., Xu, D., Wu, Q. & Shen, P. Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc. Natl. Acad. Sci. USA 102, 2141–2146 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Macleod, G.T., Hegstrom-Wojtowicz, M., Charlton, M.P. & Atwood, H.L. Fast calcium signals in Drosophila motor neuron terminals. J. Neurophysiol. 88, 2659–2663 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Fan, X. et al. New statistical methods enhance imaging of cameleon fluorescence resonance energy transfer in cultured zebrafish spinal neurons. J. Biomed. Opt. 12, 034017 (2007).

    Article  PubMed  Google Scholar 

  40. Broder, J. et al. Estimating weak ratiometric signals in imaging data. I. Dual-channel data. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 2921–2931 (2007).

    Article  PubMed  Google Scholar 

  41. Thomson, D. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).

    Article  Google Scholar 

  42. Mitra, P.P. & Pesaran, B. Analysis of dynamic brain imaging data. Biophys. J. 76, 691–708 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sornborger, A., Sailstad, C., Kaplan, E. & Sirovich, L. Spatiotemporal analysis of optical imaging data. Neuroimage 18, 610–621 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Mitra, P. & Bokil, H. Observed Brain Dynamics (Oxford University Press, New York, 2008).

    Google Scholar 

Download references

Acknowledgements

The authors thank S. Benzer, W.D. Tracey, L. Liu, M. Welsch, K. Scott and H. Kitamoto for fly strains. This work is supported by grants from the US National Institutes of Health (AA014348 and DK058348 to P.S. and EB005432 to A.T.S.).

Author information

Authors and Affiliations

Authors

Contributions

J.X. carried out the behavioral and imaging experiments. J.K.L. contributed to the behavioral assays and immunostaining. A.T.S. supervised the design of the imaging experiments and data analysis. A.T.S. and J.X. performed imaging data analysis, and helped with writing the manuscript. P.S. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Ping Shen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Sornborger, A., Lee, J. et al. Drosophila TRPA channel modulates sugar-stimulated neural excitation, avoidance and social response. Nat Neurosci 11, 676–682 (2008). https://doi.org/10.1038/nn.2119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing