Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Double dissociation of 'what' and 'where' processing in auditory cortex

Abstract

Studies of cortical connections or neuronal function in different cerebral areas support the hypothesis that parallel cortical processing streams, similar to those identified in visual cortex, may exist in the auditory system. However, this model has not yet been behaviorally tested. We used reversible cooling deactivation to investigate whether the individual regions in cat nonprimary auditory cortex that are responsible for processing the pattern of an acoustic stimulus or localizing a sound in space could be doubly dissociated in the same animal. We found that bilateral deactivation of the posterior auditory field resulted in deficits in a sound-localization task, whereas bilateral deactivation of the anterior auditory field resulted in deficits in a pattern-discrimination task, but not vice versa. These findings support a model of cortical organization that proposes that identifying an acoustic stimulus ('what') and its spatial location ('where') are processed in separate streams in auditory cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lateral view of the left hemisphere of the cat cerebrum showing the auditory areas.
Figure 2: Cooling loops in contact with areas AAF and PAF of the left hemisphere at the time of implantation.
Figure 3: Polar plots of sound-localization performance.
Figure 4: Scatter plots showing accuracy and errors on the sound-localization task.
Figure 5: Mean temporal pattern-discrimination performance (mean ± s.e.m.) for each cat (A, B and C) before and following cooling deactivation (pre/post, white), during bilateral cooling of PAF cortex (light gray) and during bilateral cooling of AAF cortex (dark gray).
Figure 6: Mean acoustic stimulus–detection performance (mean ± s.e.m.) for each cat (A, B and C) before and following cooling deactivation (pre/post, white), during bilateral cooling of PAF cortex (light gray) and during bilateral cooling of AAF cortex (dark gray).
Figure 7: Deactivation reconstructions for the AAF cooling loop in the left hemisphere and the PAF cooling loop in the right hemisphere.

Similar content being viewed by others

References

  1. Ungerleider, L.G. & Mishkin, M. Two cortical visual systems. in Analysis of Visual Behavior (eds. Ingle, D.J., Goodale, M.A. & Mansfield, R.J.W.) 486–549 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  2. Mishkin, M., Ungerleider, L.G. & Macko, K.A. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414–417 (1983).

    Article  Google Scholar 

  3. Ungerleider, L.G. & Haxby, J.V. “What” and “where” in the human brain. Curr. Opin. Neurobiol. 4, 157–165 (1994).

    Article  CAS  Google Scholar 

  4. Courtney, S.M., Ungerleider, L.G., Keil, K. & Haxby, J.V. Object and spatial visual working memory activate separate neural systems in human cortex. Cereb. Cortex 6, 39–49 (1996).

    Article  CAS  Google Scholar 

  5. Morel, A. & Bullier, J. Anatomical segregation of two cortical visual pathways in the macaque monkey. Vis. Neurosci. 4, 555–578 (1990).

    Article  CAS  Google Scholar 

  6. Bullier, J., Girard, P. & Salin, P.A. The role of area 17 in the transfer of information to exstriate visual cortex. in Cerebral Cortex 10 (eds. Peters, A. & Rockland, K.S.) 301–330 (New York, Plenum Press, 1994).

    Google Scholar 

  7. Lomber, S.G., Payne, B.R., Cornwell, P. & Long, K.D. Perceptual and cognitive visual functions of parietal and temporal cortices of the cat. Cereb. Cortex 6, 673–695 (1996).

    Article  CAS  Google Scholar 

  8. Goodale, M.A. & Milner, A.D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  Google Scholar 

  9. Rauschecker, J.P. Processing of complex sounds in the auditory cortex of cat, monkey and man. Acta Otolaryngol. Suppl. 532, 34–38 (1997).

    Article  CAS  Google Scholar 

  10. Rauschecker, J.P., Tian, B., Pons, T. & Mishkin, M. Serial and parallel processing in rhesus monkey auditory cortex. J. Comp. Neurol. 382, 89–103 (1997).

    Article  CAS  Google Scholar 

  11. Rauschecker, J.P. Parallel processing in the auditory cortex of primates. Audiol. Neurootol. 3, 86–103 (1998).

    Article  CAS  Google Scholar 

  12. Rauschecker, J.P. Cortical processing of complex sounds. Curr. Opin. Neurobiol. 8, 516–521 (1998).

    Article  CAS  Google Scholar 

  13. Tian, B., Reser, D., Durham, A., Kustov, A. & Rauschecker, J.P. Functional specialization in rhesus monkey auditory cortex. Science 292, 290–293 (2001).

    Article  CAS  Google Scholar 

  14. Romanski, L.M. et al. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat. Neurosci. 2, 1131–1136 (1999).

    Article  CAS  Google Scholar 

  15. Clarke, S. et al. What and where in human audition: selective deficits following focal hemispheric lesions. Exp. Brain Res. 147, 8–15 (2002).

    Article  Google Scholar 

  16. De Santis, L., Clarke, S. & Murray, M.M. Automatic and intrinsic auditory “what” and “where” processing in humans revealed by electrical neuroimaging. Cereb. Cortex 17, 9–17 (2007).

    Article  Google Scholar 

  17. Kelly, J.B. & Whitfield, I.C. Effects of auditory cortical lesions on discriminations of rising and falling frequency-modulated tones. J. Neurophysiol. 34, 802–816 (1971).

    Article  CAS  Google Scholar 

  18. Neff, W.D., Diamond, I.T. & Casseday, J.H. Behavioral studies of auditory discrimination: central nervous system. in Handbook of Sensory Physiology. Auditory system Vol. V/2 (eds Keidel, W.D., & Neff, W.D.) 307–400 (New York, Springer-Verlag, 1975).

    Google Scholar 

  19. Morel, A. & Imig, T.J. Thalamic projections to fields A, AI, P and VP in the cat auditory cortex. J. Comp. Neurol. 265, 119–144 (1987).

    Article  CAS  Google Scholar 

  20. Lee, C.C. & Winer, J.A. Connections of cat auditory cortex. I. Thalamococortical system. J. Comp. Neurol. 507, 1879–1900 (2008).

    Article  Google Scholar 

  21. Stecker, G.C., Mickey, B.J., Macpherson, E.A. & Middlebrooks, J.C. Spatial sensitivity in field PAF of cat auditory cortex. J. Neurophysiol. 89, 2889–2903 (2003).

    Article  Google Scholar 

  22. Lomber, S.G., Payne, B.R. & Horel, J.A. The cryoloop: an adaptable reversible cooling deactivation method for behavioral and electrophysiological assessment of neural function. J. Neurosci. Methods 86, 179–194 (1999).

    Article  CAS  Google Scholar 

  23. Heffner, H.E. & Heffner, R.S. Reply to “The sound-localization ability of cats”. J. Neurophysiol. 94, 3653–3655 (2005).

    Article  Google Scholar 

  24. Malhotra, S., Hall, A.J. & Lomber, S.G. Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J. Neurophysiol. 92, 1625–1643 (2004).

    Article  Google Scholar 

  25. Yang, X.-F., Kennedy, B.R., Lomber, S.G., Schmidt, R.E. & Rothman, S.M. Cooling produces minimal neuropathology in neocortex and hippocampus. Neurobiol. Dis. 23, 637–643 (2006).

    Article  CAS  Google Scholar 

  26. Knight, P.L. Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Res. 130, 447–467 (1977).

    Article  CAS  Google Scholar 

  27. Reale, R.A. & Imig, T.J. Tonotopic maps of auditory cortex in the cat. J. Comp. Neurol. 192, 265–292 (1980).

    Article  CAS  Google Scholar 

  28. Teuber, H.-L. Physiological psychology. Annu. Rev. Psychol. 6, 267–296 (1955).

    Article  CAS  Google Scholar 

  29. Warrington, E.K. & Rabin, P. A preliminary investigation of the relation between visual perception and visual memory. Cortex 6, 87–96 (1970).

    Article  CAS  Google Scholar 

  30. Petrides, M. Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. J. Neurosci. 20, 7496–7503 (2000).

    Article  CAS  Google Scholar 

  31. Winters, B.D., Forwood, S.E., Cowell, R.A., Saksida, L.M. & Bussey, T.J. Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J. Neurosci. 24, 5901–5908 (2004).

    Article  CAS  Google Scholar 

  32. Ahveninen, J. et al. Task-modulated “what” and “where” pathways in human auditory cortex. Proc. Natl. Acad. Sci. USA 103, 14608–14613 (2006).

    Article  CAS  Google Scholar 

  33. MacDonald, A.W., III, Cohen, J.D., Stenger, V.A. & Carter, C.S. Dissociating the role of dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  CAS  Google Scholar 

  34. Jones, E.G. The Thalamus (Plenum Press, New York, 1985).

  35. Phillips, D.P., Semple, M.N. & Kitzes, L.M. Factors shaping the tone level sensitivity of single neurons in posterior field of cat auditory cortex. J. Neurophysiol. 73, 674–686 (1995).

    Article  CAS  Google Scholar 

  36. Loftus, W.C. & Sutter, M.L. Spectrotemporal organization of excitatory and inhibitory receptive fields of cat posterior auditory field neurons. J. Neurophysiol. 86, 475–491 (2001).

    Article  CAS  Google Scholar 

  37. Tian, B. & Rauschecker, J.P. Processing of frequency-modulated sounds in the cat's anterior auditory field. J. Neurophysiol. 71, 1959–1975 (1994).

    Article  CAS  Google Scholar 

  38. Goodale, M.A., Milner, A.D., Jakobson, L.S. & Carey, D.P. A neurological dissociation between perceiving objects and grasping them. Nature 349, 154–156 (1991).

    Article  CAS  Google Scholar 

  39. Goodale, M.A. & Westwood, D.A. An evolving view of duplex vision: separate, but interacting, cortical pathways for perception and action. Curr. Opin. Neurobiol. 14, 203–211 (2004).

    Article  CAS  Google Scholar 

  40. Cavina-Pratesi, C., Goodale, M.A. & Culham, J.C. fMRI reveals a dissociation between grasping and perceiving the size of real 3D objects. PLoS ONE 5, e424 (2007).

    Article  Google Scholar 

  41. Griffiths, T.D. & Warren, J.D. What is an auditory object? Nat. Rev. Neurosci. 5, 887–892 (2004).

    Article  CAS  Google Scholar 

  42. Kaas, J.H. & Hackett, T.A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. USA (USA) 97, 11793–11799 (2000).

    Article  CAS  Google Scholar 

  43. Griffiths, T.D., Buchel, C., Frackowiak, R.S. & Patterson, R.D. Analysis of temporal structure in sound by the human brain. Nat. Neurosci. 1, 422–427 (1998).

    Article  CAS  Google Scholar 

  44. Krumbholz, K. et al. Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cereb. Cortex 15, 317–324 (2005).

    Article  Google Scholar 

  45. Clarke, S., Bellmann, A., Meuli, R.A., Assal, G. & Steck, A.J. Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing. Neuropsychologia 38, 797–807 (2000).

    Article  CAS  Google Scholar 

  46. Alain, C., Arnott, S.R., Hevenor, S., Graham, S. & Grady, C.L. “What” and “where” in human auditory system. Proc. Natl. Acad. Sci. USA 98, 12301–12306 (2001).

    Article  CAS  Google Scholar 

  47. Maeder, P.P. et al. Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14, 802–816 (2001).

    Article  CAS  Google Scholar 

  48. Arnott, S.R., Binns, M.A., Grady, C.L. & Alain, C. Assessing the auditory dual-pathway model in humans. Neuroimage 22, 401–408 (2004).

    Article  Google Scholar 

  49. Populin, L.C. & Yin, T.C.T. Behavioral studies of sound localization in the cat. J. Neurosci. 18, 2147–2160 (1998).

    Article  CAS  Google Scholar 

  50. Reinoso-Suárez, F. Topographical Atlas of the Cat Brain for Experimental-Physiological Research [German] (Merck, Darmstadt, Germany, 1961).

Download references

Acknowledgements

We thank A.J. Hall for assistance with training and testing the cats, E.M. Woller and A.J. Hall for assistance with preparing the figures and J.G. Mellott for assistance with the tissue processing. We are grateful to M. Mishkin and M. Goodale for very helpful suggestions on an earlier version of this manuscript. This work was supported by grants from the Canadian Institutes of Health Research, the Natural Science and Engineering Research Council of Canada and The Hearing Foundation of Canada. S.M. was supported by a Predoctoral Training Award from the US National Institute for Deafness and Other Communication Disorders.

Author information

Authors and Affiliations

Authors

Contributions

S.G.L. conceived and designed the experiments and carried out all of the surgical procedures. S.G.L. and S.M. conducted the behavioral training and testing. S.G.L. analyzed the data and supervised the histological processing of the tissue. S.G.L. and S.M. drafted and edited the manuscript.

Corresponding author

Correspondence to Stephen G Lomber.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 533 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomber, S., Malhotra, S. Double dissociation of 'what' and 'where' processing in auditory cortex. Nat Neurosci 11, 609–616 (2008). https://doi.org/10.1038/nn.2108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing