Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Corollary discharge circuits for saccadic modulation of the pigeon visual system

Abstract

A saccadic eye movement causes a variety of transient perceptual sequelae that might be the results of corollary discharge. Here we describe the neural circuits for saccadic corollary discharge that modulates activity throughout the pigeon visual system. Saccades in pigeons caused inhibition that was mediated by corollary discharge followed by enhancement of firing activity in the telencephalic hyperpallium, visual thalamus and pretectal nucleus lentiformis mesencephali (nLM) with opposite responses in the accessory optic nucleus (nBOR). Inactivation of thalamic neurons eliminated saccadic responses in telencephalic neurons, and inactivation of both the nLM and the nBOR abolished saccadic responses in thalamic neurons. Saccade-related omnipause neurons in the brainstem raphe complex inhibited the nBOR and excited the nLM, whereas inactivation of raphe neurons eliminated saccadic responses in both optokinetic and thalamic neurons. It seems that saccadic responses in telencephalic neurons are generated by corollary discharge signals from brainstem neurons that are transmitted through optokinetic and thalamic neurons. These signals might have important roles in visual perception.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual structures and pathways are similar in birds and mammals.
Figure 2: Firing patterns and time course of responses in visual neurons in four brain regions during spontaneous saccades and OKN.
Figure 3: Comparisons of responses of nOPT neurons during saccades across stationary gratings and simulated saccade-like motion of gratings.
Figure 4: Effects of blockade of the optokinetic nuclei by GABA on saccadic responses of nOPT neurons.
Figure 5: Effects of optokinetic or raphe lesions on saccadic responses of thalamic and optokinetic neurons.
Figure 6: Classification of raphe neurons and their responses to antidromic stimulation of the optokinetic nuclei.
Figure 7: Responses of neurons in the nBOR and nLM to electrical stimulation of the raphe complex.
Figure 8: Summary diagram showing neuronal pathways and information flow related to saccadic responses in the structures under study (light gray rectangles; dark gray represents structures not studied here).

Similar content being viewed by others

References

  1. Tolias, A.S. et al. Eye movements modulate visual receptive fields of V4 neurons. Neuron 29, 757–767 (2001).

    Article  CAS  Google Scholar 

  2. Kusunoki, M. & Goldberg, M.E. The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J. Neurophysiol. 89, 1519–1527 (2003).

    Article  Google Scholar 

  3. Sommer, M.A. & Wurtz, R.H. Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444, 374–377 (2006).

    Article  CAS  Google Scholar 

  4. Yarrow, K., Haggard, P., Heal, R., Brown, P. & Rothwell, J.C. Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414, 302–305 (2001).

    Article  CAS  Google Scholar 

  5. Morrone, M.C., Ross, J. & Burr, D. Saccadic eye movements cause compression of time as well as space. Nat. Neurosci. 8, 950–954 (2005).

    Article  CAS  Google Scholar 

  6. Lee, D. & Malpeli, J.G. Effects of saccades on the activity of neurons in the cat lateral geniculate nucleus. J. Neurophysiol. 79, 922–936 (1998).

    Article  CAS  Google Scholar 

  7. Reppas, J.B., Usrey, W.M. & Reid, R.C. Saccadic eye movements modulate visual responses in the lateral geniculate nucleus. Neuron 35, 961–974 (2002).

    Article  CAS  Google Scholar 

  8. Royal, D.W., Sary, G., Schall, J.D. & Casagrande, V.A. Correlates of motor planning and postsaccadic fixation in the macaque monkey lateral geniculate nucleus. Exp. Brain Res. 168, 62–75 (2006).

    Article  CAS  Google Scholar 

  9. Burr, D.C., Morrone, M.C. & Ross, J. Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371, 511–513 (1994).

    Article  CAS  Google Scholar 

  10. Ross, J., Burr, D.C. & Morrone, M.C. Suppression of the magnocellular pathways during saccades. Behav. Brain Res. 80, 1–8 (1996).

    Article  CAS  Google Scholar 

  11. Thiele, A., Henning, P., Kubischik, M. & Hoffmann, K.P. Neural mechanisms of saccadic suppression. Science 295, 2460–2462 (2002).

    Article  CAS  Google Scholar 

  12. Wurtz, R.H. & Sommer, M.A. Identifying corollary discharges for movement in the primate brain. Prog. Brain Res. 144, 47–60 (2004).

    Article  Google Scholar 

  13. Wylie, D.R., Glover, R.G. & Lau, K.L. Projections from the accessory optic system and pretectum to the dorsolateral thalamus in the pigeon (Columbia livia): a study using both anterograde and retrograde tracers. J. Comp. Neurol. 391, 456–469 (1998).

    Article  CAS  Google Scholar 

  14. Cao, P., Yang, Y., Yang, Y. & Wang, S.R. Differential modulation of thalamic neurons by optokinetic nuclei in the pigeon. Brain Res. 1069, 159–165 (2006).

    Article  CAS  Google Scholar 

  15. McKenna, O.C. & Wallman, J. Accessory optic system and pretectum of birds: comparisons with those of other vertebrates. Brain Behav. Evol. 26, 91–116 (1985).

    Article  CAS  Google Scholar 

  16. Shimizu, T. & Bowers, A.N. Visual circuits of the avian telencephalon: evolutionary implications. Behav. Brain Res. 98, 183–191 (1999).

    Article  CAS  Google Scholar 

  17. Gioanni, H., Rey, J., Villalobos, J., Richard, D. & Dalbera, A. Optokinetic nystagmus in the pigeon (Columba livia). II. Role of the pretectal nucleus of the accessory optic system (AOS). Exp. Brain Res. 50, 237–247 (1983).

    CAS  PubMed  Google Scholar 

  18. Clement, G. & Magnin, M. Effects of accessory optic system lesions on vestibule-ocular and optokinetic reflexes in the cat. Exp. Brain Res. 55, 49–59 (1984).

    Article  CAS  Google Scholar 

  19. Schiff, D., Cohen, B., Buttner-Ennever, J. & Matsuo, V. Effects of lesions of the nucleus of the optic tract on optokinetic nystagmus and after-nystagmus in the monkey. Exp. Brain Res. 79, 225–239 (1990).

    Article  CAS  Google Scholar 

  20. Toledo, C.A., Hamassaki-Britto, D.E. & Britto, L.R. Serotonergic afferents of the pigeon accessory optic nucleus. Brain Res. 705, 341–344 (1995).

    Article  CAS  Google Scholar 

  21. Reiner, A. & Karten, H.J. Laminar distribution of the cells of origin of the descending tectofugal pathway in the pigeon (Columba livia). J. Comp. Neurol. 204, 165–187 (1982).

    Article  CAS  Google Scholar 

  22. Luksch, H. Cytoarchitecture of the avian optic tectum: neuronal substrate for cellular computation. Rev. Neurosci. 14, 85–106 (2003).

    Article  Google Scholar 

  23. Everling, S., Pare, M., Dorris, M.C. & Munoz, D.P. Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior. J. Neurophysiol. 79, 511–528 (1998).

    Article  CAS  Google Scholar 

  24. Brecht, M., Singer, W. & Engel, A.K. Amplitude and direction of saccadic eye movements depend on the synchronicity of collicular population activity. J. Neurophysiol. 92, 424–432 (2004).

    Article  Google Scholar 

  25. Angeles Luque, M., Perez-Perez, M.P., Herrero, L. & Torres, B. Involvement of the optic tectum and mesencephalic reticular formation in the generation of saccadic eye movements in goldfish. Brain Res. Brain Res. Rev. 49, 388–397 (2005).

    Article  CAS  Google Scholar 

  26. Sparks, D.L. The brainstem control of saccadic eye movements. Nat. Rev. Neurosci. 3, 952–964 (2002).

    Article  CAS  Google Scholar 

  27. Horn, A.K. The reticular formation. Prog. Brain Res. 151, 127–155 (2005).

    Article  Google Scholar 

  28. Pettigrew, J.D., Wallman, J. & Wildsoet, C.F. Saccadic oscillations facilitate ocular perfusion from the avian pecten. Nature 343, 362–363 (1990).

    Article  CAS  Google Scholar 

  29. Wohlschläger, A., Jäger, R. & Delius, J.D. Head and eye movements in unrestrained pigeons (Columba livia). J. Comp. Psychol. 107, 313–317 (1993).

    Article  Google Scholar 

  30. Niu, Y.Q., Xiao, Q., Liu, R.F., Wu, L.Q. & Wang, S.R. Response characteristics of the pigeon's pretectal neurons to illusory contours and motion. J. Physiol. (Lond.) 577, 805–813 (2006).

    Article  CAS  Google Scholar 

  31. Keller, E.L. Participation of medial pontine reticular formation in eye movement generation in monkey. J. Neurophysiol. 37, 316–332 (1974).

    Article  CAS  Google Scholar 

  32. Bagnoli, P. & Burkhalter, A. Organization of the afferent projections to the wulst in the pigeon. J. Comp. Neurol. 214, 103–113 (1983).

    Article  CAS  Google Scholar 

  33. Güntürkün, O. & Karten, H.J. An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia). J. Comp. Neurol. 314, 721–749 (1991).

    Article  Google Scholar 

  34. Koshiba, M., Yohda, M. & Nakamura, S. Topological relation of chick thalamofugal visual projections with hyperpallium revealed by three color tracers. Neurosci. Res. 52, 235–242 (2005).

    Article  Google Scholar 

  35. Brecha, N. & Karten, H.J. Accessory optic projections upon oculomotor nuclei and vestibulocerebellum. Science 203, 913–916 (1979).

    Article  CAS  Google Scholar 

  36. Buttner-Ennever, J.A., Cohen, B., Horn, A.K. & Reisine, H. Pretectal projections to the oculomotor complex of the monkey and their role in eye movements. J. Comp. Neurol. 366, 348–359 (1996).

    Article  CAS  Google Scholar 

  37. Lisberger, S.G. & Fuchs, A.F. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J. Neurophysiol. 41, 733–763 (1978).

    Article  CAS  Google Scholar 

  38. Lisberger, S.G. Postsaccadic enhancement of initiation of smooth pursuit eye movements in monkeys. J. Neurophysiol. 79, 1918–1930 (1998).

    Article  CAS  Google Scholar 

  39. Ibbotson, M.R., Price, N.S., Crowder, N.A., Ono, S. & Mustari, M.J. Enhanced motion sensitivity follows saccadic suppression in the superior temporal sulcus of the macaque cortex. Cereb. Cortex 17, 1129–1138 (2007).

    Article  CAS  Google Scholar 

  40. Schmidt, M., Lehnert, G., Baker, R.G. & Hoffmann, K.P. Dendritic morphology of projection neurons in the cat pretectum. J. Comp. Neurol. 369, 520–532 (1996).

    Article  CAS  Google Scholar 

  41. Mustari, M.J., Fuchs, A.F. & Pong, M. Response properties of pretectal omnidirectional pause neurons in the behaving primate. J. Neurophysiol. 77, 116–125 (1997).

    Article  CAS  Google Scholar 

  42. Fischer, W.H., Schmidt, M. & Hoffmann, K.P. Saccade-induced activity of dorsal lateral geniculate nucleus X- and Y-cells during pharmacological inactivation of the cat pretectum. Vis. Neurosci. 15, 197–210 (1998).

    Article  CAS  Google Scholar 

  43. Cao, P., Gu, Y. & Wang, S.R. Visual neurons in the pigeon brain encode the acceleration of stimulus motion. J. Neurosci. 24, 7690–7698 (2004).

    Article  CAS  Google Scholar 

  44. Wang, S.R. & Matsumoto, N. Postsynaptic potentials and morphology of tectal cells responding to electrical stimulation of the bullfrog nucleus isthmi. Vis. Neurosci. 5, 479–488 (1990).

    Article  CAS  Google Scholar 

  45. Karten, H.J. & Hodos, W. A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia) (The Johns Hopkins Press, Baltimore, Maryland, 1967).

    Google Scholar 

Download references

Acknowledgements

We thank S.G. Lisberger of University of California San Francisco for help in editing the manuscript. This work was supported by the National Natural Science Foundation of China (90208008) and by the Chinese Academy of Sciences (KSCX1-YW-R-32 and Brain-Mind Project).

Author information

Authors and Affiliations

Authors

Contributions

Yan Yang conducted the experiments throughout, P.C. conducted the first half of the experiments, Yang Yang conducted the second half of the experiments and S.-R.W. supervised the project and wrote the manuscript. All co-authors conducted the data analyses.

Corresponding author

Correspondence to Shu-Rong Wang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Table 1 (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Cao, P., Yang, Y. et al. Corollary discharge circuits for saccadic modulation of the pigeon visual system. Nat Neurosci 11, 595–602 (2008). https://doi.org/10.1038/nn.2107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing