TRPV1 shows dynamic ionic selectivity during agonist stimulation

Article metrics


Transient receptor potential vanilloid 1 (TRPV1) is an ion channel that is gated by noxious heat, capsaicin and other diverse stimuli. It is a nonselective cation channel that prefers Ca2+ over Na+. These permeability characteristics, as in most channels, are widely presumed to be static. On the contrary, we found that activation of native or recombinant rat TRPV1 leads to time- and agonist concentration–dependent increases in relative permeability to large cations and changes in Ca2+ permeability. Using the substituted cysteine accessibility method, we saw that these changes were attributable to alterations in the TRPV1 selectivity filter. TRPV1 agonists showed different capabilities for evoking ionic selectivity changes. Furthermore, protein kinase C–dependent phosphorylation of Ser800 in the TRPV1 C terminus potentiated agonist-evoked ionic selectivity changes. Thus, the qualitative signaling properties of TRPV1 are dynamically modulated during channel activation, a process that probably shapes TRPV1 participation in pain, cytotoxicity and neurotransmitter release.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Capsaicin evokes a time-dependent increase in TRPV1 NMDG permeability.
Figure 2: Capsaicin alters TRPV1 permeability to large cations.
Figure 3: Modification by methanethiosulfonate reagents reverses capsaicin-evoked ionic selectivity change in TRPV1 M644C.
Figure 4: Differential ionic selectivity changes evoked by TRPV1 agonists.
Figure 5: Capsaicin- and [Ca2+]o-dependent changes in TRPV1 PCa/PNa.
Figure 6: Agonist-evoked changes in TRPV1 PCa/PNa in the presence of 10 mM Ca2+ and 150 mM Na+.
Figure 7: Protein kinase C sensitizes capsaicin-evoked TRPV1 ionic selectivity changes.


  1. 1

    Khakh, B.S. & Lester, H.A. Dynamic selectivity filters in ion channels. Neuron 23, 653–658 (1999).

  2. 2

    Kiss, L., LoTurco, J. & Korn, S.J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263 (1999).

  3. 3

    Khakh, B.S., Bao, X.R., Labarca, C. & Lester, H.A. Neuronal P2X transmitter–gated cation channels change their ion selectivity in seconds. Nat. Neurosci. 2, 322–330 (1999).

  4. 4

    Surprenant, A., Rassendren, F., Kawashima, E., North, R.A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996).

  5. 5

    Virginio, C., MacKenzie, A., North, R.A. & Surprenant, A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J. Physiol. (Lond.) 519, 335–346 (1999).

  6. 6

    Virginio, C., MacKenzie, A., Rassendren, F.A., North, R.A. & Surprenant, A. Pore dilation of neuronal P2X receptor channels. Nat. Neurosci. 2, 315–321 (1999).

  7. 7

    Caterina, M.J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487–517 (2001).

  8. 8

    Ahern, G.P., Wang, X. & Miyares, R.L. Polyamines are potent ligands for the capsaicin receptor TRPV1. J. Biol. Chem. 281, 8991–8995 (2006).

  9. 9

    Binshtok, A.M., Bean, B.P. & Woolf, C.J. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 449, 607–610 (2007).

  10. 10

    Hellwig, N. et al. TRPV1 acts as proton channel to induce acidification in nociceptive neurons. J. Biol. Chem. 279, 34553–34561 (2004).

  11. 11

    Meyers, J.R. et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J. Neurosci. 23, 4054–4065 (2003).

  12. 12

    Myrdal, S.E. & Steyger, P.S. TRPV1 regulators mediate gentamicin penetration of cultured kidney cells. Hear. Res. 204, 170–182 (2005).

  13. 13

    Chung, M.K., Guler, A.D. & Caterina, M.J. Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J. Biol. Chem. 280, 15928–15941 (2005).

  14. 14

    Zhuang, Z.Y., Xu, H., Clapham, D.E. & Ji, R.R. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J. Neurosci. 24, 8300–8309 (2004).

  15. 15

    Dwyer, T.M., Adams, D.J. & Hille, B. The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75, 469–492 (1980).

  16. 16

    Eickhorst, A.N., Berson, A., Cockayne, D., Lester, H.A. & Khakh, B.S. Control of P2X2 channel permeability by the cytosolic domain. J. Gen. Physiol. 120, 119–131 (2002).

  17. 17

    Akabas, M.H., Stauffer, D.A., Xu, M. & Karlin, A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258, 307–310 (1992).

  18. 18

    Owsianik, G., Talavera, K., Voets, T. & Nilius, B. Permeation and selectivity of TRP channels. Annu. Rev. Physiol. 68, 685–717 (2006).

  19. 19

    Huang, S.M. et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. USA 99, 8400–8405 (2002).

  20. 20

    McNamara, F.N., Randall, A. & Gunthorpe, M.J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol. 144, 781–790 (2005).

  21. 21

    Xu, H., Blair, N.T. & Clapham, D.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 25, 8924–8937 (2005).

  22. 22

    Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082 (2006).

  23. 23

    Welch, J.M., Simon, S.A. & Reinhart, P.H. The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc. Natl. Acad. Sci. USA 97, 13889–13894 (2000).

  24. 24

    Garcia-Martinez, C., Morenilla-Palao, C., Planells-Cases, R., Merino, J.M. & Ferrer-Montiel, A. Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J. Biol. Chem. 275, 32552–32558 (2000).

  25. 25

    Bhave, G. et al. Protein kinase C phosphorylation sensitizes, but does not activate, the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. USA 100, 12480–12485 (2003).

  26. 26

    Numazaki, M., Tominaga, T., Toyooka, H. & Tominaga, M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cε and identification of two target serine residues. J. Biol. Chem. 277, 13375–13378 (2002).

  27. 27

    Vellani, V., Mapplebeck, S., Moriondo, A., Davis, J.B. & McNaughton, P.A. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol. (Lond.) 534, 813–825 (2001).

  28. 28

    Liu, L., Lo, Y., Chen, I. & Simon, S.A. The responses of rat trigeminal ganglion neurons to capsaicin and two nonpungent vanilloid receptor agonists, olvanil and glyceryl nonamide. J. Neurosci. 17, 4101–4111 (1997).

  29. 29

    Ahern, G.P., Brooks, I.M., Miyares, R.L. & Wang, X.B. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J. Neurosci. 25, 5109–5116 (2005).

  30. 30

    Yeh, B.I., Kim, Y.K., Jabbar, W. & Huang, C.L. Conformational changes of pore helix coupled to gating of TRPV5 by protons. EMBO J. 24, 3224–3234 (2005).

  31. 31

    Flynn, G.E., Johnson, J.P., Jr. & Zagotta, W.N. Cyclic nucleotide–gated channels: shedding light on the opening of a channel pore. Nat. Rev. Neurosci. 2, 643–651 (2001).

  32. 32

    Alam, A., Shi, N. & Jiang, Y. Structural insight into Ca2+ specificity in tetrameric cation channels. Proc. Natl. Acad. Sci. USA 104, 15334–15339 (2007).

  33. 33

    Docherty, R.J., Yeats, J.C., Bevan, S. & Boddeke, H.W. Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch. 431, 828–837 (1996).

  34. 34

    Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

  35. 35

    Khakh, B.S. & Egan, T.M. Contribution of transmembrane regions to ATP-gated P2X2 channel permeability dynamics. J. Biol. Chem. 280, 6118–6129 (2005).

  36. 36

    Khakh, B.S., Zhou, X., Sydes, J., Galligan, J.J. & Lester, H.A. State-dependent cross-inhibition between transmitter-gated cation channels. Nature 406, 405–410 (2000).

  37. 37

    Bleakman, D., Brorson, J.R. & Miller, R.J. The effect of capsaicin on voltage-gated calcium currents and calcium signals in cultured dorsal root ganglion cells. Br. J. Pharmacol. 101, 423–431 (1990).

  38. 38

    Evans, A.R., Nicol, G.D. & Vasko, M.R. Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res. 712, 265–273 (1996).

  39. 39

    Marinelli, S., Vaughan, C.W., Christie, M.J. & Connor, M. Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus in vitro. J. Physiol. (Lond.) 543, 531–540 (2002).

  40. 40

    Jancso, G. Pathobiological reactions of C fibre primary sensory neurones to peripheral nerve injury. Exp. Physiol. 77, 405–431 (1992).

  41. 41

    Chancellor, M.B. & de Groat, W.C. Intravesical capsaicin and resiniferatoxin therapy: spicing up the ways to treat the overactive bladder. J. Urol. 162, 3–11 (1999).

  42. 42

    Skeberdis, V.A. et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat. Neurosci. 9, 501–510 (2006).

  43. 43

    Sobczyk, A. & Svoboda, K. Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current. Neuron 53, 17–24 (2007).

  44. 44

    Liu, L. & Simon, S.A. Similarities and differences in the currents activated by capsaicin, piperine and zingerone in rat trigeminal ganglion cells. J. Neurophysiol. 76, 1858–1869 (1996).

  45. 45

    Szallasi, A. The vanilloid (capsaicin) receptor: receptor types and species differences. Gen. Pharmacol. 25, 223–243 (1994).

  46. 46

    Runnels, L.W., Yue, L. & Clapham, D.E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).

  47. 47

    Lewis, C.A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. (Lond.) 286, 417–445 (1979).

Download references


We thank M. Zhu and D. Julius for providing mouse TRPV1 and 5-HT3 cDNAs, respectively, J. Wang for expert technical assistance and G. Tomaselli and members of the Caterina lab for helpful suggestions. This work was supported by grants from the US National Institutes of Health (RO1 NS051551 and RO1 NS054902), the W.M. Keck Foundation, the Arnold and Mabel Beckman Foundation and the Blaustein Pain Research Fund to M.J.C.

Author information

All authors designed and interpreted the experiments. M.-K.C. and A.D.G. carried out the experiments, M.J.C. and M.-K.C. wrote the manuscript and M.J.C. supervised the project.

Correspondence to Michael J Caterina.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Tables 1–3 and Methods (PDF 2438 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading