Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carcinogenesis and therapeutics: the microbiota perspective

Abstract

Cancer arises from the acquisition of multiple genetic and epigenetic changes in host cells over the span of many years, promoting oncogenic traits and carcinogenesis. Most cancers develop following random somatic alterations of key oncogenic genes, which are favoured by a number of risk factors, including lifestyle, diet and inflammation. Importantly, the environment where tumours evolve provides a unique source of signalling cues that affects cancer cell growth, survival, movement and metastasis. Recently, there has been increased interest in how the microbiota, the collection of microorganisms inhabiting the host body surface and cavities, shapes a micro-environment for host cells that can either promote or prevent cancer formation. The microbiota, particularly the intestinal biota, plays a central role in host physiology, and the composition and activity of this consortium of microorganisms is directly influenced by known cancer risk factors such as lifestyle, diet and inflammation. In this REVIEW, we discuss the pro- and anticarcinogenic role of the microbiota, as well as highlighting the therapeutic potential of microorganisms in tumourigenesis. The broad impacts, and, at times, opposing roles of the microbiota in carcinogenesis serve to illustrate the complex and sometimes conflicted relationship between microorganisms and the host—a relationship that could potentially be harnessed for therapeutic benefits.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Environmental changes can promote dysbiosis and pathogen-derived susceptibility to cancer.
Figure 2: Microbial interactions with the immune system modulate cancer risk.
Figure 3: The microbiota influences drug toxicity and efficacy.
Figure 4: Cancer management through the use of bacteriotherapy.

References

  1. 1

    Garrett, W. S. Cancer and the microbiota. Science 348, 80–86 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Oh, J.-K. & Weiderpass, E. Infection and cancer: global distribution and burden of diseases. Ann. Glob. Health 80, 384–392 (2014).

    Article  PubMed  Google Scholar 

  4. 4

    Biedermann, L. et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS ONE 8, e59260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Mottawea, W. et al. Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn's disease. Nat. Commun. 7, 1–14 (2016).

    Article  CAS  Google Scholar 

  8. 8

    Raymond, F. et al. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J. 10, 707–720 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    O'Keefe, S. J. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 13, 691–706 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Dieleman, L. A. et al. Helicobacter hepaticus does not induce or potentiate colitis in interleukin-10-deficient mice. Infect. Immun. 68, 5107–5113 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Kuss, S. K. et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334, 249–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Zhang, B. et al. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science 346, 861–865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Jones, M. K. et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346, 755–759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Morgan, X. C. & Huttenhower, C. Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology 146, 1437–1448 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Fujimura, K. E. & Lynch, S. V. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 17, 592–602 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Scher, J. U. & Abramson, S. B. The microbiome and rheumatoid arthritis. Nat. Rev. Rheumatol. 7, 569–578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Tang, W. H. & Hazen, S. L. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 124, 4204–4211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Tilg, H. & Kaser, A. Gut microbiome, obesity and metabolic dysfunction. J. Clin. Invest. 121, 2126–2132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Wlodarska, M., Kostic, A. D. & Xavier, R. J. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 17, 577–591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Borges-Canha, M., Portela-Cidade, J. P., Dinis-Ribeiro, M., Leite-Moreira, A. F. & Pimentel-Nunes, P. Role of colonic microbiota in colorectal carcinogenesis: a systematic review. Rev. Esp. Enferm. Dig. 107, 659–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Vipperla, K. & O'Keefe, S. J. The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr. Clin. Pract. 27, 624–635 (2012).

    Article  PubMed  Google Scholar 

  25. 25

    Parsonnet, J. et al. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325, 1127–1131 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Wroblewski, L. E., Peek, R. M. & Wilson, K. T. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev. 23, 713–739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Tsugawa, H. et al. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe 12, 764–777 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Hatakeyama, M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 15, 306–316 (2014).

    Article  CAS  Google Scholar 

  29. 29

    Koeppel, M., Garcia-Alcalde, F., Glowinski, F., Schlaermann, P. & Meyer, T. F. Helicobacter pylori infection causes characteristic DNA damage patterns in human cells. Cell Rep. 11, 1703–1713 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Liu, X. et al. A systematic review on the association between the Helicobacter pylori vacA i genotype and gastric disease. FEBS Open Bio. 6, 409–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Palframan, S. L., Kwok, T. & Gabriel, K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front. Cell. Infect. Microbiol. 2, 92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Jo, H. J. et al. Analysis of gastric microbiota by pyrosequencing: minor role of bacteria other than Helicobacter pylori in the gastric carcinogenesis. Helicobacter 21, 364–374 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49, 347–353 (2001).

  34. 34

    Kamangar, F. et al. Opposing risks of gastric cardia and noncardia gastric adenocarcinomas associated with Helicobacter pylori seropositivity. J. Natl. Cancer Inst. 98, 1445–1452 (2006).

    Article  PubMed  Google Scholar 

  35. 35

    Hansen, S., Melby, K. K., Aase, S., Jellum, E. & Vollset, S. E. Helicobacter pylori infection and risk of cardia cancer and non-cardia gastric cancer. A nested case-control study. Scand. J. Gastroenterol. 34, 353–360 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Ye, W. et al. Helicobacter pylori infection and gastric atrophy: risk of adenocarcinoma and squamous-cell carcinoma of the esophagus and adenocarcinoma of the gastric cardia. J. Natl. Cancer Inst. 96, 388–396 (2004).

    Article  PubMed  Google Scholar 

  37. 37

    Islami, F. & Kamangar, F. Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev. Res. 1, 329–338 (2008).

    Article  CAS  Google Scholar 

  38. 38

    Xie, F.-J. et al. Helicobacter pylori infection and esophageal cancer risk: an updated meta-analysis. World J. Gastroenterol. 19, 6098–6107 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Wistuba, I. I. & Gazdar, A. F. Gallbladder cancer: lessons from a rare tumour. Nat. Rev. Cancer 4, 695–706 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Scanu, T. et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17, 763–774 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Aran, D. et al. Widespread parainflammation in human cancer. Genome Biol. 17, 145 (2016).

  42. 42

    Rakoff-Nahoum, S. Why cancer and inflammation?. Yale J. Biol. Med. 79, 123–130 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Itzkowitz, S. H. & Yio, X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G7–G17 (2004).

  46. 46

    Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Miyoshi, J. & Chang, E. B. The gut microbiota and inflammatory bowel diseases. Transl. Res. 179, 38–48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Allen-Vercoe, E. & Jobin, C. Fusobacterium and Enterobacteriaceae: important players for CRC? Immunol. Lett. 162, 54–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Tilg, H. & Moschen, A. R. Food, immunity, and the microbiome. Gastroenterology 148, 1107–119 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Rivera-Chávez, F. et al. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19, 443–454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Singh, V. et al. Microbiota-dependent hepatic lipogenesis mediated by stearoyl CoA desaturase 1 (SCD1) promotes metabolic syndrome in TLR5-deficient mice. Cell Metab. 22, 983–996 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Belcheva, A. et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158, 288–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Winter, S. E., Lopez, C. A. & Bäumler, A. J. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep. 14, 319–327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Wynendaele, E. et al. Crosstalk between the microbiome and cancer cells by quorum sensing peptides. Peptides 64, 40–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Pevsner-Fischer, M. et al. Role of the microbiome in non-gastrointestinal cancers. World J. Clin. Oncol. 7, 200–213 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Marchesi, J. R. et al. Towards the human colorectal cancer microbiome. PLoS ONE 6, e20447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut http://doi.org/bx3c (2016).

  60. 60

    Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6, 8727 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Feng, Q. et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat. Commun. 6, 6528 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Gao, Z., Guo, B., Gao, R., Zhu, Q. & Qin, H. Microbiota disbiosis is associated with colorectal cancer. Front. Microbiol. 6, 20 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Lu, Y. et al. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci. Rep. 6, 26337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Zhu, Y., Michelle Luo, T., Jobin, C. & Young, H. A. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 309, 119–127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Zackular, J. P., Rogers, M. A. M., Ruffin, M. T. & Schloss, P. D. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. 7, 1112–1121 (2014).

    Article  CAS  Google Scholar 

  66. 66

    Narayanan, V., Peppelenbosch, M. P. & Konstantinov, S. R. Human fecal microbiome-based biomarkers for colorectal cancer. Cancer Prev. Res. 7, 1108–1111 (2014).

    Article  CAS  Google Scholar 

  67. 67

    Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 12, e1004977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Arthur, J. C. et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 5, 4724 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Moschen, A. R. et al. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe 19, 455–469 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. 73

    Zackular, J. P. et al. The gut microbiome modulates colon tumorigenesis. mBio 4, e00692-13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Nagao-Kitamoto, H. et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell Mol. Gastroenterol. Hepatol. 2, 468–481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Baxter, N. T., Zackular, J. P., Chen, G. Y. & Schloss, P. D. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome 2, 20 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Zhan, Y. et al. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res. 73, 7199–7210 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA 111, 18321–18326 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin.Microbiol. 43, 3380–3389 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Macfarlane, S. & Dillon, J. F. Microbial biofilms in the human gastrointestinal tract. J. Appl. Microbiol. 102, 1187–1196 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Babbar, N. & Gerner, E. W. Targeting polyamines and inflammation for cancer prevention. Recent Results Cancer Res. 188, 49–64 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Johnson, C. H. et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 21, 891–897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Tomkovich, S. et al. Human colorectal cancer-associated biofilms promote tumorigenesis in susceptible mice. Gastroenterology 150, S77 (2016).

    Article  Google Scholar 

  83. 83

    Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    ElRakaiby, M. et al. Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics. OMICS 18, 402–414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Miller, J. F. A. P. & Sadelain, M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell 27, 439–449 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Khan, H., Gucalp, R. & Shapira, I. Evolving concepts: immunity in oncology from targets to treatments. J. Oncol. 2015, 847383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Nicodemus, C. F. Antibody-based immunotherapy of solid cancers: progress and possibilities. Immunotherapy 7, 923–939 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Gelao, L., Criscitiello, C., Esposito, A., Goldhirsch, A. & Curigliano, G. Immune checkpoint blockade in cancer treatment: a double-edged sword cross-targeting the host as an “innocent bystander”. Toxins 6, 914–933 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Abdel-Wahab, N., Shah, M. & Suarez-Almazor, M. E. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS ONE 11, e0160221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Zitvogel, L., Ayyoub, M., Routy, B. & Kroemer, G. Microbiome and anticancer immunosurveillance. Cell 165, 276–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    McCarthy, E. F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J. 26, 154–158 (2006).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Shirota, H. & Klinman, D. M. Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Expert Rev. Vaccines 13, 299–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Muggia, F. M., Dimery, I. & Arbuck, S. G. Camptothecin and its analogs. An overview of their potential in cancer therapeutics. Ann. N. Y. Acad. Sci. 803, 213–223 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Nagar, S. & Blanchard, R. L. Pharmacogenetics of uridine diphosphoglucuronosyltransferase (UGT) 1A family members and its role in patient response to irinotecan. Drug Metab. Rev. 38, 393–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Roberts, A. B., Wallace, B. D., Venkatesh, M. K., Mani, S. & Redinbo, M. R. Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity. Mol. Pharmacol. 84, 208–217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Wallace, B. D. et al. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem. Biol. 22, 1238–1249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Paci, A. et al. Review of therapeutic drug monitoring of anticancer drugs part 1--cytotoxics. Eur. J. Cancer 50, 2010–2019 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Frank, M. et al. TLR signaling modulates side effects of anticancer therapy in the small intestine. J. Immunol. 194, 1983–1995 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Touchefeu, Y. et al. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment. Pharmacol. Ther. 40, 409–421 (2014).

    CAS  PubMed  Google Scholar 

  108. 108

    Ferreira, M. R., Muls, A., Dearnaley, D. P. & Andreyev, H. J. Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist. Lancet Oncol. 15, 139–147 (2014).

    Article  Google Scholar 

  109. 109

    Ciorba, M. A., Hallemeier, C. L., Stenson, W. F. & Parikh, P. J. Probiotics to prevent gastrointestinal toxicity from cancer therapy: an interpretive review and call to action. Curr. Opin. Support Palliat. Care 9, 157–162 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    Emadi, A., Jones, R. J. & Brodsky, R. A. Cyclophosphamide and cancer: golden anniversary. Nat. Rev. Clin. Oncol. 6, 638–647 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Chaney, S. G., Campbell, S. L., Bassett, E. & Wu, Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit. Rev. Oncol. Hematol. 53, 3–11 (2005).

    Article  PubMed  Google Scholar 

  113. 113

    Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Lehouritis, P. et al. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci. Rep. 5, 14554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Masood, M. I., Qadir, M. I., Shirazi, J. H. & Khan, I. U. Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol. 37, 91–98 (2011).

    Article  PubMed  Google Scholar 

  116. 116

    Rafter, J. J. The role of lactic acid bacteria in colon cancer prevention. Scand. J. Gastroenterol. 30, 497–502 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. 117

    Yu, A.-Q. & Li, L. The potential role of probiotics in cancer prevention and treatment. Nutr. Cancer 68, 535–544 (2016).

    Article  PubMed  Google Scholar 

  118. 118

    Zhong, L., Zhang, X. & Covasa, M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol. 20, 7878–7886 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Gao, Z. et al. Probiotics modify human intestinal mucosa-associated microbiota in patients with colorectal cancer. Mol. Med. Rep. 12, 6119–6127 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Chapman, C. M. C., Gibson, G. R. & Rowland, I. In vitro evaluation of single- and multi-strain probiotics: inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe 18, 405–413 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. 121

    Chapman, C. M. C., Gibson, G. R. & Rowland, I. Health benefits of probiotics: are mixtures more effective than single strains? Eur. J. Nutr. 50, 1–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    So, S. S., Wan, M. L. & El-Nezami, H. Probiotics-mediated suppression of cancer. Curr. Opin. Oncol. 29, 62–72 (2017).

    Article  PubMed  Google Scholar 

  123. 123

    Khan, A. A., Khurshid, M., Khan, S. & Alshamsan, A. Gut microbiota and probiotics: current status and their role in cancer therapeutics. Drug Dev. Res. 74, 365–375 (2013).

    Article  CAS  Google Scholar 

  124. 124

    dos Reis, S. A. et al. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr. Res. 37, 1–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Arthur, J. C. et al. VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci. Rep. 3, 2868 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126

    Smits, L. P., Bouter, K. E., de Vos, W. M., Borody, T. J. & Nieuwdorp, M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145, 946–953 (2013).

    Article  PubMed  Google Scholar 

  127. 127

    Kassam, Z., Lee, C. H., Yuan, Y. & Hunt, R. H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol. 108, 500–508 (2013).

    Article  PubMed  Google Scholar 

  128. 128

    Li, S. S. et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352, 586–589 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Grinspan, A. M. & Kelly, C. R. Fecal microbiota transplantation for ulcerative colitis: not just yet. Gastroenterology 149, 15–18 (2015).

    Article  PubMed  Google Scholar 

  130. 130

    Kelly, C. R. et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 149, 223–237 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785–794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Luo, X. et al. Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models. Oncol. Res. 12, 501–508 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Panteli, J. T., Forkus, B. A., Van Dessel, N. & Forbes, N. S. Genetically modified bacteria as a tool to detect microscopic solid tumor masses with triggered release of a recombinant biomarker. Integr. Biol. (Camb) 7, 423–434 (2015).

    Article  CAS  Google Scholar 

  134. 134

    Panteli, J. T. & Forbes, N. S. Engineered bacteria detect spatial profiles in glucose concentration within solid tumor cell masses. Biotechnol. Bioeng. 113, 2474–2484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Van Dessel, N., Swofford, C. A. & Forbes, N. S. Potent and tumor specific: arming bacteria with therapeutic proteins. Ther. Deliv. 6, 385–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  137. 137

    Zwiebel, J. A. Cancer gene and oncolytic virus therapy. Semin. Oncol. 28, 336–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. 167, 1–21 (2016).

  139. 139

    Winglee, K. & Fodor, A. A. Intrinsic association between diet and the gut microbiome: current evidence. Nutr. Diet. Suppl. 7, 69–76 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    O'Keefe, S. J. D. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Wu, G. D. et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65, 63–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. 142

    Yang, J.-Y. et al. Enteric viruses ameliorate gut inflammation via Toll-like receptor 3 and Toll-like receptor 7-mediated interferon-β production. Immunity 44, 889–900 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Manrique, P. et al. Healthy human gut phageome. Proc. Natl Acad. Sci. USA 113, 10400–10405 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. 144

    Vogtmann, E. & Goedert, J. J. Epidemiologic studies of the human microbiome and cancer. Br. J. Cancer 114, 237–242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Meurman, J. H. Oral microbiota and cancer. J. Oral Microbiol. 2, 5195 (2010).

    Article  CAS  Google Scholar 

  146. 146

    Wang, L. & Ganly, I. The oral microbiome and oral cancer. Clin. Lab. Med. 34, 711–719 (2014).

    Article  PubMed  Google Scholar 

  147. 147

    Guerrero-Preston, R. et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget 7, 51320–51334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. 148

    Pushalkar, S. et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol. 12, 144 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  149. 149

    Schmidt, B. L. et al. Changes in abundance of oral microbiota associated with oral cancer. PLoS ONE 9, e98741 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Flynn, K. J., Baxter, N. T. & Schloss, P. D. Metabolic and community synergy of oral bacteria in colorectal cancer. mSphere 1, e00102-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. 151

    Michaud, D. S. & Izard, J. Microbiota, oral microbiome, and pancreatic cancer. Cancer J. 20, 203–206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Farrell, J. J. et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61, 582–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. 153

    Ahn, J., Chen, C. Y. & Hayes, R. B. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control 23, 399–404 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  154. 154

    Hosgood, H. D. et al. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ. Mol. Mutagen. 55, 643–651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Gui, Q.-F., Lu, H.-F., Zhang, C.-X., Xu, Z.-R. & Yang, Y.-H. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet. Mol. Res. 14, 5642–5651 (2015).

    Article  PubMed  Google Scholar 

  156. 156

    Yu, G. et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 17, 163 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Yan, X. et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am. J. Cancer Res. 5, 3111–3122 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Hieken, T. J. et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci. Rep. 6, 30751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Urbaniak, C. et al. The microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 82, 5039–5048 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Xuan, C. et al. Microbial dysbiosis is associated with human breast cancer. PLoS ONE 9, e83744 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Lakritz, J. R. et al. Gut bacteria require neutrophils to promote mammary tumorigenesis. Oncotarget 6, 9387–9396 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. 162

    Roderburg, C. & Luedde, T. The role of the gut microbiome in the development and progression of liver cirrhosis and hepatocellular carcinoma. Gut Microbes 5, 441–445 (2014).

    Article  PubMed  Google Scholar 

  163. 163

    Huang, Y. et al. Identification of helicobacter species in human liver samples from patients with primary hepatocellular carcinoma. J. Clin. Pathol. 57, 1273–1277 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Rocha, M. et al. Association of Helicobacter species with hepatitis C cirrhosis with or without hepatocellular carcinoma. Gut 54, 396–401 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Dapito, D. H. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer cell 21, 504–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. 166

    Zhang, H.-L. et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J. Hepatol. 57, 803–812 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

C. Jobin acknowledges support from NIH (RO1DK073338, RO1 AT08623 and R21 CA195226) and the University of Florida Department of Medicine Gatorade Fund.

Author information

Affiliations

Authors

Contributions

C.J. provided topics for the author's section. All authors contributed equally to the writing.

Corresponding author

Correspondence to Christian Jobin.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsilimigras, M., Fodor, A. & Jobin, C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2, 17008 (2017). https://doi.org/10.1038/nmicrobiol.2017.8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing