Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic silencing of IRF1 dysregulates type III interferon responses to respiratory virus infection in epithelial to mesenchymal transition

Abstract

Chronic oxidative injury produced by airway disease triggers a transforming growth factor-β (TGF-β)-mediated epigenetic reprogramming known as the epithelial–mesenchymal transition (EMT). We observe that EMT silences protective mucosal interferon (IFN)-I and III production associated with enhanced rhinovirus (RV) and respiratory syncytial virus (RSV) replication. Mesenchymal transitioned cells are defective in inducible interferon regulatory factor 1 (IRF1) expression by occluding RelA and IRF3 access to the promoter. IRF1 is necessary for the expression of type III IFNs (IFNLs 1 and 2/3). Induced by the EMT, zinc finger E-box binding homeobox 1 (ZEB1) binds and silences IRF1. Ectopic ZEB1 is sufficient for IRF1 silencing, whereas ZEB1 knockdown partially restores IRF1-IFNL upregulation. ZEB1 silences IRF1 through the catalytic activity of the enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), forming repressive H3K27(me3) marks. We observe that IRF1 expression is mediated by ZEB1 de-repression, and our study demonstrates how airway remodelling/fibrosis is associated with a defective mucosal antiviral response through ZEB1-initiated epigenetic silencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deficient type I/III IFN responses in TGF-β-induced EMT.
Figure 2: IRF1 silencing dysregulates the IFN response in TGF-β-induced EMT.
Figure 3: CRISPR/Cas9-mediated IRF1 gene knockout.
Figure 4: ZEB1 downregulates the IFN response in hSAECs and TGF-β-induced EMT-hSAECs.
Figure 5: ZEB1 downregulates the IFN response via epigenetic silencing of IRF1.
Figure 6: ZEB1-mediated epigenetic regulation of IRF1.

Similar content being viewed by others

References

  1. To, T. et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health 12, 204 (2012).

    Article  Google Scholar 

  2. Lambrecht, B. N. & Hammad, H. The airway epithelium in asthma. Nat. Med. 18, 684–692 (2012).

    Article  CAS  Google Scholar 

  3. Holgate, S. T. et al. Epithelial–mesenchymal communication in the pathogenesis of chronic asthma. Proc. Am. Thorac. Soc. 1, 93–98 (2004).

    Article  CAS  Google Scholar 

  4. Saglani, S. et al. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers. Am. J. Respir. Crit. Care. Med. 176, 858–864 (2007).

    Article  Google Scholar 

  5. Johnston, S. L. et al. Community study of role of viral infections in exacerbations of asthma in 9–11 year old children. BMJ 310, 1225–1229 (1995).

    Article  CAS  Google Scholar 

  6. Johnston, N. W. & Sears, M. R. Asthma exacerbations. 1: Epidemiology. Thorax 61, 722–728 (2006).

    Article  CAS  Google Scholar 

  7. Jamieson, K. C., Warner, S. M., Leigh, R. & Proud, D. Rhinovirus in the pathogenesis and clinical course of asthma. Chest 148, 1508–1516 (2015).

    Article  Google Scholar 

  8. Liu, P. et al. Retinoic acid-inducible gene I mediates early antiviral response and toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J. Virol. 81, 1401–1411 (2007).

    Article  CAS  Google Scholar 

  9. Slater, L. et al. Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog. 6, e1001178 (2010).

    Article  Google Scholar 

  10. Fang, L. et al. Ataxia telangiectasia mutated kinase mediates NF-κB serine 276 phosphorylation and interferon expression via the IRF7-RIG-I amplification loop in paramyxovirus infection. J. Virol. 89, 2628–2642 (2015).

    Article  Google Scholar 

  11. Tian, B. et al. BRD4 couples NF-κB/RelA with airway inflammation and the IRF-RIG-I amplification loop in respiratory syncytial virus infection. J. Virol. 91, e00007-17 (2017).

    Article  Google Scholar 

  12. de Veer, M. J. et al. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 69, 912–920 (2001).

    CAS  PubMed  Google Scholar 

  13. Swider, A., Siegel, R., Eskdale, J. & Gallagher, G. Regulation of interferon lambda-1 (IFNL1/IFN-λ1/IL-29) expression in human colon epithelial cells. Cytokine 65, 17–23 (2014).

    Article  CAS  Google Scholar 

  14. Ank, N. et al. Lambda interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J. Virol. 80, 4501–4509 (2006).

    Article  CAS  Google Scholar 

  15. Khaitov, M. R. et al. Respiratory virus induction of α-, β-, and λ-interferons in bronchial epithelial cells and peripheral blood mononuclear cells. Allergy 64, 375–386 (2009).

    Article  CAS  Google Scholar 

  16. Moore, W. C. et al. Characterization of the severe asthma phenotype by The National Heart, Lung, and Blood Institute's severe asthma research program. J. Allergy. Clin. Immunol. 119, 405–413 (2007).

    Article  Google Scholar 

  17. Edwards, M. R. et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol. 6, 797–806 (2013).

    Article  CAS  Google Scholar 

  18. Johnston, S. L. Innate immunity in the pathogenesis of virus-induced asthma exacerbations. Proc. Am. Thorac. Soc. 4, 267–270 (2007).

    Article  CAS  Google Scholar 

  19. Contoli, M. et al. Role of deficient type III interferon-λ production in asthma exacerbations. Nat. Med. 12, 1023–1026 (2006).

    Article  CAS  Google Scholar 

  20. Thomas, B. J. et al. Transforming growth factor-β enhances rhinovirus infection by diminishing early innate responses. Am. J. Respir. Cell. Mol. Biol. 41, 339–347 (2009).

    Article  CAS  Google Scholar 

  21. Mathur, S. K. et al. Interaction between allergy and innate immunity: model for eosinophil regulation of epithelial cell interferon expression. Ann. Allergy Asthma Immunol. 111, 25–31 (2013).

    Article  CAS  Google Scholar 

  22. Bedke, N. et al. Transforming growth factor-β promotes rhinovirus replication in bronchial epithelial cells by suppressing the innate immune response. PLoS ONE 7, e44580 (2012).

    Article  CAS  Google Scholar 

  23. Kalita, M. et al. Systems approaches to modeling chronic mucosal inflammation. Biomed. Res. Int. 2013, 505864 (2013).

    Article  Google Scholar 

  24. Tian, B. et al. Analysis of the TGFβ-induced program in primary airway epithelial cells shows essential role of NF-κB/RelA signaling network in type II epithelial mesenchymal transition. BMC Genomics 16, 529 (2015).

    Article  Google Scholar 

  25. Ijaz, T. et al. Systems biology approaches to understanding epithelial mesenchymal transition (EMT) in mucosal remodeling and signaling in asthma. World Allergy Organ. J. 7, 13 (2014).

    Article  Google Scholar 

  26. Zhao, Y., Tian, B., Sadygov, R. G., Zhang, Y. & Brasier, A. R. Integrative proteomic analysis reveals reprograming tumor necrosis factor signaling in epithelial mesenchymal transition. J. Proteomics 148, 126–138 (2016).

    Article  CAS  Google Scholar 

  27. Cieslik, M. et al. Epigenetic coordination of signaling pathways during the epithelial–mesenchymal transition. Epigenetics Chromatin 6, 28 (2013).

    Article  CAS  Google Scholar 

  28. Jamaluddin, M. et al. Angiotensin II induces nuclear factor (NF)-κB1 isoforms to bind the angiotensinogen gene acute-phase response element: a stimulus-specific pathway for NF-κB activation. Mol. Endocrinol. 14, 99–113 (2000).

    CAS  PubMed  Google Scholar 

  29. Escalante, C. R., Yie, J., Thanos, D. & Aggarwal, A. K. Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 391, 103–106 (1998).

    Article  CAS  Google Scholar 

  30. Tian, B., Yang, J. & Brasier, A. R. Two-step cross-linking for analysis of protein–chromatin interactions. Methods Mol. Biol. 809, 105–120 (2012).

    Article  CAS  Google Scholar 

  31. Tian, B. et al. BRD4 mediates NF-κB-dependent epithelial–mesenchymal transition and pulmonary fibrosis via transcriptional elongation. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L1183–L1201 (2016).

    Article  Google Scholar 

  32. Ding, S. & Robek, M. D. Peroxisomal MAVS activates IRF1-mediated IFN-λ production. Nat. Immunol. 15, 700–701 (2014).

    Article  CAS  Google Scholar 

  33. Maniatis, T. et al. Structure and function of the interferon-β enhanceosome. Cold Spring Harb. Symp. Quant. Biol. 63, 609–620 (1998).

    Article  CAS  Google Scholar 

  34. Lu, M., Jolly, M. K., Levine, H., Onuchic, J. N. & Ben-Jacob, E. MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc. Natl Acad. Sci. USA 110, 18144–18149 (2013).

    Article  CAS  Google Scholar 

  35. Siegel, R., Eskdale, J. & Gallagher, G. Regulation of IFN-λ1 promoter activity (IFN-λ1/IL-29) in human airway epithelial cells. J. Immunol. 187, 5636–5644 (2011).

    Article  CAS  Google Scholar 

  36. Ahn, Y. H. et al. ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. J. Clin. Invest. 122, 3170–3183 (2012).

    Article  CAS  Google Scholar 

  37. Postigo, A. A. & Dean, D. C. ZEB represses transcription through interaction with the corepressor CtBP. Proc. Natl Acad. Sci. USA 96, 6683–6688 (1999).

    Article  CAS  Google Scholar 

  38. Zhang, Y. et al. Corepressor protein CDYL functions as a molecular bridge between polycomb repressor complex 2 and repressive chromatin mark trimethylated histone lysine 27. J. Biol. Chem. 286, 42414–42425 (2011).

    Article  CAS  Google Scholar 

  39. Zhang, Z. et al. PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. Stem Cells 29, 229–240 (2011).

    Article  Google Scholar 

  40. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  Google Scholar 

  41. Harada, H. et al. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol. Cell Biol. 14, 1500–1509 (1994).

    Article  CAS  Google Scholar 

  42. Harada, H. et al. Absence of the type I IFN system in EC cells: transcriptional activator (IRF-1) and repressor (IRF-2) genes are developmentally regulated. Cell 63, 303–312 (1990).

    Article  CAS  Google Scholar 

  43. Wark, P. A. et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med. 201, 937–947 (2005).

    Article  CAS  Google Scholar 

  44. Harris, W. T. et al. Myofibroblast differentiation and enhanced TGF-B signaling in cystic fibrosis lung disease. PLoS ONE 8, e70196 (2013).

    Article  CAS  Google Scholar 

  45. Park, J. S. et al. Clinical significance of mTOR, ZEB1, ROCK1 expression in lung tissues of pulmonary fibrosis patients. BMC Pulm. Med. 14, 168 (2014).

    Article  Google Scholar 

  46. Ramirez, R. D. et al. Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res. 64, 9027–9034 (2004).

    Article  CAS  Google Scholar 

  47. Gern, J. E. Rhinovirus and the initiation of asthma. Curr. Opin. Allergy Clin. Immunol. 9, 73–78 (2009).

    Article  CAS  Google Scholar 

  48. Lee, W. M., Chen, Y., Wang, W. & Mosser, A. Growth of human rhinovirus in H1-HeLa cell suspension culture and purification of virions. Methods Mol. Biol. 1221, 49–61 (2015).

    Article  CAS  Google Scholar 

  49. Brasier, A. R. et al. Rela Ser276 phosphorylation-coupled Lys310 acetylation controls transcriptional elongation of inflammatory cytokines in respiratory syncytial virus infection. J. Virol. 85, 11752–11769 (2011).

    Article  Google Scholar 

  50. Kalita, M. K. et al. Sources of cell-to-cell variability in canonical nuclear factor-kappaB (NF-κB) signaling pathway inferred from single cell dynamic images. J. Biol. Chem. 286, 37741–37757 (2011).

    Article  CAS  Google Scholar 

  51. Brasier, A. R. et al. A promoter recruitment mechanism for tumor necrosis factor-α-induced interleukin-8 transcription in type II pulmonary epithelial cells. Dependence on nuclear abundance of Rel A, NF-κB1, and c-Rel transcription factors. J. Biol. Chem. 273, 3551–3561 (1998).

    Article  CAS  Google Scholar 

  52. Yang, J. et al. Systematic determination of human cyclin dependent kinase (CDK)-9 interactome identifies novel functions in RNA splicing mediated by the DEAD Box (DDX)-5/17 RNA helicases. Mol. Cell. Proteomics 14, 2701–2721 (2015).

    Article  CAS  Google Scholar 

  53. Yang, J. et al. A probabilistic approach to learn chromatin architecture and accurate inference of the NF-κB/RelA regulatory network using ChIP-Seq. Nucleic Acids Res. 41, 7240–7259 (2013).

    Article  CAS  Google Scholar 

  54. Schoggins, J. W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505, 691–695 (2014).

    Article  CAS  Google Scholar 

  55. Mazda, M., Nishi, K., Naito, Y. & Ui-Tei, K. E-cadherin is transcriptionally activated via suppression of ZEB1 transcriptional repressor by small RNA-mediated gene silencing. PLoS ONE 6, e28688 (2011).

    Article  CAS  Google Scholar 

  56. Cheon, H. et al. IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J. 32, 2751–2763 (2013).

    Article  CAS  Google Scholar 

  57. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  Google Scholar 

  58. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by National Institutes of Health (NIH) grants NIAID AI062885 (to A.R.B.), UL1TR001439 (to A.R.B.) and NIEHS ES006676 (to J.Y. and A.R.B.), National Science Foundation (NSF) grant DMS-1361411/DMS-1361318 (to A.R.B.) and Sealy Center for Molecular Medicine pilot funds. The authors thank C.M. Rice and J.E. Gern for sharing reagents, acknowledge research support from the UTMB Optical Imaging Lab and thank D. Konkel for critically editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.R.B. and J.Y. conceived and conducted experiments, analysed results and wrote the paper. H.S. and B.T. performed experiments and collected data. R.P.G. contributed to RSV-related experiments.

Corresponding authors

Correspondence to Jun Yang or Allan R. Brasier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–12 and Supplementary Tables 1–4 (PDF 12385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tian, B., Sun, H. et al. Epigenetic silencing of IRF1 dysregulates type III interferon responses to respiratory virus infection in epithelial to mesenchymal transition. Nat Microbiol 2, 17086 (2017). https://doi.org/10.1038/nmicrobiol.2017.86

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.86

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing