Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility

Abstract

Wolbachia are obligate intracellular bacteria1 that infect arthropods, including approximately two-thirds of insect species2. Wolbachia manipulate insect reproduction by enhancing their inheritance through the female germline. The most common alteration is cytoplasmic incompatibility (CI)35, where eggs from uninfected females fail to develop when fertilized by sperm from Wolbachia-infected males. By contrast, if female and male partners are both infected, embryos are viable. CI is a gene-drive mechanism impacting population structure6 and causing reproductive isolation7, but its molecular mechanism has remained unknown. We show that a Wolbachia deubiquitylating enzyme (DUB) induces CI. The CI-inducing DUB, CidB, cleaves ubiquitin from substrates and is encoded in a two-gene operon, and the other protein, CidA, binds CidB. Binding is strongest between cognate partners in cidA-cidB homologues. In transgenic Drosophila, the cidA-cidB operon mimics CI when sperm introduce it into eggs, and a catalytically inactive DUB does not induce sterility. Toxicity is recapitulated in yeast by CidB alone; this requires DUB activity but is rescued by coexpressed CidA. A paralogous operon involves a putative nuclease (CinB) rather than a DUB. Analogous binding, toxicity and rescue in yeast were observed. These results identify a CI mechanism involving interacting proteins that are secreted into germline cells by Wolbachia, and suggest new methods for insect control.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Modification–rescue hypothesis for CI.
Figure 2: Testing of the modification–rescue hypothesis in S. cerevisiae.
Figure 3: CidB is a DUB.
Figure 4: Induction of CI by transgenic cidA-cidB males.

References

  1. 1

    Hertig, M. & Wolbach, S. B. Studies on Rickettsia-like micro-organisms in insects. J. Med. Res. 44, 329–374 (1924).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Laven, H. in Genetics of Distinct Vectors of Disease (ed. Wright, J. ) Ch. 7, 251 (Elsevier, 1967).

    Google Scholar 

  4. 4

    Yen, J. H. & Barr, A. R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232, 657–658 (1971).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Hunter, M. S., Perlman, S. J. & Kelly, S. E. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc. Biol. Sci. 270, 2185–2190 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Turelli, M. & Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353, 440–442 (1991).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Bordenstein, S. R., O'Hara, F. P. & Werren, J. H. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409, 707–710 (2001).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Clark, M. E., Veneti, Z., Bourtzis, K. & Karr, T. L. Wolbachia distribution and cytoplasmic incompatibility during sperm development: the cyst as the basic cellular unit of CI expression. Mech. Dev. 120, 185–198 (2003).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Presgraves, D. C. A genetic test of the mechanism of Wolbachia-induced cytoplasmic incompatibility in Drosophila. Genetics 154, 771–776 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Poinsot, D., Charlat, S. & Mercot, H. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confronting the models with the facts. BioEssays 25, 259–265 (2003).

    Article  PubMed  Google Scholar 

  11. 11

    Bourtzis, K., Braig, H. R. & Karr, T. L. in Insect Symbiosis Vol. 1 (eds Bourtzis, K. & Miller, T. A. ) Ch. 14 (CRC, 2003).

    Book  Google Scholar 

  12. 12

    Hurst, L. D. The evolution of cytoplasmic incompatibility or when spite can be successful. J. Theor. Biol. 148, 269–277 (1991).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Tram, U., Ferree, P. M. & Sullivan, W. Identification of Wolbachia—host interacting factors through cytological analysis. Microbes Infect. 5, 999–1011 (2003).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Callaini, G., Dallai, R. & Riparbelli, M. G. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J. Cell Sci. 110(Pt 2), 271–280 (1997).

    CAS  PubMed  Google Scholar 

  15. 15

    Reed, K. M. & Werren, J. H. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol. Reprod. Dev. 40, 408–418 (1995).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Beckmann, J. F. & Fallon, A. M. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility. Insect Biochem. Mol. Biol. 43, 867–878 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Ronau, J. A., Beckmann, J. F. & Hochstrasser, M. Substrate specificity of the ubiquitin and Ubl proteases. Cell Res. 26, 441–456 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Knizewski, L., Kinch, L. N., Grishin, N. V., Rychlewski, L. & Ginalski, K. Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches. BMC Struct. Biol. 7, 40 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Mercot, H. & Charlat, S. Wolbachia infections in Drosophila melanogaster and D. simulans: polymorphism and levels of cytoplasmic incompatibility. Genetica 120, 51–59 (2004).

    Article  PubMed  Google Scholar 

  20. 20

    Bian, G. et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340, 748–751 (2013).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Xi, Z., Khoo, C. C. & Dobson, S. L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310, 326–328 (2005).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Morrow, M. E. et al. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Biochemistry 52, 3564–3578 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Rorth, P. Gal4 in the Drosophila female germline. Mech. Dev. 78, 113–118 (1998).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Diao, F. & White, B. H. A novel approach for directing transgene expression in Drosophila: T2A-Gal4 in-frame fusion. Genetics 190, 1139–1144 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Clark, M. E., Heath, B. D., Anderson, C. L. & Karr, T. L. Induced paternal effects mimic cytoplasmic incompatibility in Drosophila. Genetics 173, 727–734 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Callaini, G., Riparbelli, M. G., Giordano, R. & Dallai, R. Mitotic defects associated with cytoplasmic incompatibility in Drosophila simulans. J. Invertebr. Pathol. 67, 55–64 (1996).

    Article  Google Scholar 

  29. 29

    Landmann, F., Orsi, G. A., Loppin, B. & Sullivan, W. Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathogens 5, e1000343 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Werren, J. H. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587–609 (1997).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Beckmann, J. F. & Fallon, A. M. Decapitation improves detection of Wolbachia pipientis (Rickettsiales: Anaplasmataceae) in Culex pipiens (Diptera: Culicidae) mosquitoes by the polymerase chain reaction. J. Med. Entomol. 49, 1103–1108 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Chiu, J., March, P. E., Lee, R. & Tillett, D. Site-directed, ligase-independent mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res. 32, e174 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Shrestha, R. K. et al. Insights into the mechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product. Biochemistry 53, 3199–3217 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Sheedlo, M. J. et al. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc. Natl Acad. Sci. USA 112, 15090–15095 (2015).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Mruk, D. D. & Cheng, C. Y. Enhanced chemiluminescence (ECL) for routine immunoblotting: an inexpensive alternative to commercially available kits. Spermatogenesis 1, 121–122 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Guthrie, C. & Fink, G. (eds) Guide to Yeast Genetics and Molecular Biology. Vol. 194, 1–863 (Elsevier, 1991).

    Google Scholar 

  38. 38

    Takeo, S. et al. Shaggy/glycogen synthase kinase 3β and phosphorylation of Sarah/regulator of calcineurin are essential for completion of Drosophila female meiosis. Proc. Natl Acad. Sci. USA 109, 6382–6389 (2012).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Sullivan, W., Ashburner, M. & Hawley, R. S. Drosophila Protocols (Cold Spring Harbor Laboratory Press, 2000).

    Google Scholar 

  40. 40

    Ritorto, M. S. et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat. Commun. 5, 4763 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Fallon, R. Tomko Jr and A. Chavez for critical review of the manuscript, L. Klasson for sharing preliminary data, H. Frydman and L. Cooley for fly lines, J. Carlson, K. Menuz, P. Graham and C. Yam for support with fly experimentation, C. Schlieker for use of instruments and C. Das and M. Sheedlo for HA-Ub-VME. Funding was provided by USDA-NIFA postdoctoral fellowship 2014-67012-22268 (to J.F.B.), the Marion Brooks-Wallace fellowship (to J.F.B.) and National Institutes of Health grant GM053756 (to M.H.).

Author information

Affiliations

Authors

Contributions

J.F.B. and J.A.R. are equal contributors in the conception and performance of the experiments as well as writing of the manuscript. M.H. conceived experiments and wrote the manuscript.

Corresponding author

Correspondence to Mark Hochstrasser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Discussion, Supplementary References. (PDF 2407 kb)

Supplementary Table 1

Construct Database and Primer Database. (XLSX 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beckmann, J., Ronau, J. & Hochstrasser, M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol 2, 17007 (2017). https://doi.org/10.1038/nmicrobiol.2017.7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing