Regulation of PfEMP1–VAR2CSA translation by a Plasmodium translation-enhancing factor

Abstract

Pregnancy-associated malaria commonly involves the binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate A (CSA) through the PfEMP1–VAR2CSA protein. VAR2CSA is translationally repressed by an upstream open reading frame. In this study, we report that the P. falciparum translation enhancing factor (PTEF) relieves upstream open reading frame repression and thereby facilitates VAR2CSA translation. VAR2CSA protein levels in var2csa-transcribing parasites are dependent on the expression level of PTEF, and the alleviation of upstream open reading frame repression requires the proteolytic processing of PTEF by PfCalpain. Cleavage generates a C-terminal domain that contains a sterile-alpha-motif-like domain. The C-terminal domain is permissive to cytoplasmic shuttling and interacts with ribosomes to facilitate translational derepression of the var2csa coding sequence. It also enhances translation in a heterologous translation system and thus represents the first non-canonical translation enhancing factor to be found in a protozoan. Our results implicate PTEF in regulating placental CSA binding of infected erythrocytes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: ptef expression is associated with the CSA-binding capacity of IEs.
Figure 2: Proteolytic processing separates antagonistic targeting motifs in the PTEF protein.
Figure 3: PTEF localizes to multiple cellular compartments.
Figure 4: CTD fragment of PTEF interacts with the ribosomes.
Figure 5: PTEF is required for efficient VAR2CSA translation.
Figure 6: tGFP synthesis in RTTF in the presence of PTEF domains.

References

  1. 1

    Rao, Y. S. et al. Mutation bias is the driving force of codon usage in the Gallus gallus genome. DNA Res. 18, 499–512 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Rask, T. S., Hansen, D. A., Theander, T. G., Pedersen, A. G. & Lavstsen, T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes—divide and conquer. PLoS Comput. Biol. 6, e1000933 (2010).

    Article  Google Scholar 

  3. 3

    Chen, Q. et al. Developmental selection of var gene expression in Plasmodium falciparum. Nature 394, 392–395 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Scherf, A. et al. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 17, 5418–5426 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Salanti, A. et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 49, 179–191 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Salanti, A. et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J. Exp. Med. 200, 1197–1203 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Dzikowski, R. et al. Mechanisms underlying mutually exclusive expression of virulence genes by malaria parasites. EMBO Rep. 8, 959–965 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Amulic, B., Salanti, A., Lavstsen, T., Nielsen, M. A. & Deitsch, K. W. An upstream open reading frame controls translation of var2csa, a gene implicated in placental malaria. PLoS Pathog. 5, e1000256 (2009).

    Article  Google Scholar 

  9. 9

    Mok, B. W. et al. Default pathway of var2csa switching and translational repression in Plasmodium falciparum. PLoS One 3, e1982 (2008).

    Article  Google Scholar 

  10. 10

    Bancells, C. & Deitsch, K. W. A molecular switch in the efficiency of translation reinitiation controls expression of var2csa, a gene implicated in pregnancy-associated malaria. Mol. Microbiol. 90, 472–488 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Kemp, D. J. et al. A chromosome-9 deletion in Plasmodium falciparum results in loss of cytoadherence. Mem. Inst. Oswaldo Cruz. 87, 85–89 (1992).

    Article  Google Scholar 

  12. 12

    Francis, S. E. et al. Six genes are preferentially transcribed by the circulating and sequestered forms of Plasmodium falciparum parasites that infect pregnant women. Infect. Immun. 75, 4838–4850 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Fried, M. et al. The distinct proteome of placental malaria parasites. Mol. Biochem. Parasitol. 155, 57–65 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Ndam, N. T. et al. Plasmodium falciparum transcriptome analysis reveals pregnancy malaria associated gene expression. PLoS One 3, e1855 (2008).

    Article  Google Scholar 

  15. 15

    Vignali, M. et al. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children. Eur. J. Clin. Invest. 121, 1119–1129 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Bertin, G. I. et al. Differential protein expression profiles between Plasmodium falciparum parasites isolated from subjects presenting with pregnancy-associated malaria and uncomplicated malaria in Benin. J. Infect. Dis. 208, 1987–1997 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Camarda, G. et al. Regulated oligomerisation and molecular interactions of the early gametocyte protein Pfg27 in Plasmodium falciparum sexual differentiation. Int. J. Parasitol. 40, 663–673 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Sharma, A., Sharma, I., Kogkasuriyachai, D. & Kumar, N. Structure of a gametocyte protein essential for sexual development in Plasmodium falciparum. Nature Struct. Biol. 10, 197–203 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Rutledge, G. G. et al. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature 542, 101–104 (2017).

    CAS  Article  Google Scholar 

  20. 20

    Coppi, A., Pinzon-Ortiz, C., Hutter, C. & Sinnis, P. The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J. Exp. Med. 201, 27–33 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Heiber, A. et al. Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLoS Pathog. 9, e1003546 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Oehring, S. C. et al. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum. Genome Biol. 13, R108 (2012).

    Article  Google Scholar 

  23. 23

    Ghorbal, M. et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nature Biotechnol. 32, 819–821 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Rug, M., Prescott, S. W., Fernandez, K. M., Cooke, B. M. & Cowman, A. F. The role of KAHRP domains in knob formation and cytoadherence of P falciparum-infected human erythrocytes. Blood 108, 370–378 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Waterkeyn, J. G. et al. Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. EMBO J. 19, 2813–2823 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Soerli, J. et al. Human monoclonal IgG selection of Plasmodium falciparum for the expression of placental malaria-specific variant surface antigens. Parasite Immunol. 31, 341–346 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Mandava, C. S. et al. Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G. Nucleic Acids Res. 40, 2054–2064 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Ralph, S. A. et al. Transcriptome analysis of antigenic variation in Plasmodium falciparumvar silencing is not dependent on antisense RNA. Genome Biol. 6, R93 (2005).

    Article  Google Scholar 

  29. 29

    Goel, S. et al. Targeted disruption of a ring-infected erythrocyte surface antigen (RESA)-like export protein gene in Plasmodium falciparum confers stable chondroitin 4-sulfate cytoadherence capacity. J. Biol. Chem. 289, 34408–34421 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Duffy, M. F. et al. Transcribed var genes associated with placental malaria in Malawian women. Infect. Immun. 74, 4875–4883 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Tuikue Ndam, N. G. et al. High level of var2csa transcription by Plasmodium falciparum isolated from the placenta. J. Infect. Dis. 192, 331–335 (2005).

    Article  Google Scholar 

  32. 32

    Ukaegbu, U. E. et al. A unique virulence gene occupies a principal position in immune evasion by the malaria parasite Plasmodium falciparum. PLoS Genet. 11, e1005234 (2015).

    Article  Google Scholar 

  33. 33

    Skabkin, M. A., Skabkina, O. V., Hellen, C. U. T. & Pestova, T. V. Reinitiation and other unconventional posttermination events during eukaryotic translation. Mol. Cell. 51, 249–264 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Kumar, M., Srinivas, V. & Patankar, S. Upstream AUGs and upstream ORFs can regulate the downstream ORF in Plasmodium falciparum. Malar. J. 14, 512 (2015).

    Article  Google Scholar 

  35. 35

    Watanabe, J., Sasaki, M., Suzuki, Y. & Sugano, S. Analysis of transcriptomes of human malaria parasite Plasmodium falciparum using full-length enriched library: identification of novel genes and diverse transcription start sites of messenger RNAs. Gene 291, 105–113 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Caro, F., Ahyong, V., Betegon, M. & DeRisi, J. L. Genome-wide regulatory dynamics of translation in the Plasmodium falciparum asexual blood stages. Elife 3, e04106 (2014).

    Article  Google Scholar 

  37. 37

    Schleich, S. et al. DENR-MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth. Nature 512, 208–212 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Xue, S. F. & Barna, M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nature Rev. Mol. Cell. Biol. 13, 355–369 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Dinman, J. D. Pathways to specialized ribosomes: the Brussels lecture. J. Mol. Biol. 428, 2186–2194 (2016).

    CAS  Article  Google Scholar 

  40. 40

    Velichutina, I. V., Rogers, M. J., McCutchan, T. F. & Liebman, S. W. Chimeric rRNAs containing the GTPase centers of the developmentally regulated ribosomal rRNAs of Plasmodium falciparum are functionally distinct. RNA 4, 594–602 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Li, J., McConkey, G. A., Rogers, M. J., Waters, A. P. & McCutchan, T. R. Plasmodium: the developmentally regulated ribosome. Exp. Parasitol. 78, 437–441 (1994).

    CAS  Article  Google Scholar 

  42. 42

    Ganesan, K. et al. A genetically hard-wired metabolic transcriptome in Plasmodium falciparum fails to mount protective responses to lethal antifolates. PLoS Pathog. 4, e1000214 (2008).

    Article  Google Scholar 

  43. 43

    Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, e5 (2003).

    Article  Google Scholar 

  44. 44

    Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002).

    CAS  Article  Google Scholar 

  45. 45

    Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002).

    CAS  Article  Google Scholar 

  46. 46

    Coulson, R. M. R., Hall, N. & Ouzounis, C. A. Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. Genome Res. 14, 1548–1554 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976).

    CAS  Article  Google Scholar 

  48. 48

    Deitsch, K., Driskill, C. & Wellems, T. Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 29, 850–853 (2001).

    CAS  Article  Google Scholar 

  49. 49

    Zheng, Z. et al. Titration-free 454 sequencing using Y adapters. Nature Protoc. 6, 1367–1376 (2011).

    CAS  Article  Google Scholar 

  50. 50

    Zheng, Z. et al. Titration-free massively parallel pyrosequencing using trace amounts of starting material. Nucleic Acids Res. 38, e137 (2010).

    Article  Google Scholar 

  51. 51

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  Article  Google Scholar 

  52. 52

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  53. 53

    Carver, T. et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24, 2672–2676 (2008).

    CAS  Article  Google Scholar 

  54. 54

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  Article  Google Scholar 

  55. 55

    Traggiai, E. et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nature Med. 10, 871–875 (2004).

    CAS  Article  Google Scholar 

  56. 56

    Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT–PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).

    CAS  Article  Google Scholar 

  57. 57

    Koripella, R. K. et al. A conserved histidine in switch-II of EF-G moderates release of inorganic phosphate. Sci. Rep. 5, 12970 (2015).

    Article  Google Scholar 

  58. 58

    Pang, Y. H. et al. The antiprion compound 6-aminophenanthridine inhibits the protein folding activity of the ribosome by direct competition. J. Biol. Chem. 288, 19081–19089 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Scilifelab in Stockholm for RNA-seq and mass spectrometry experiments, K.W. Deitsch for providing luciferase reporter plasmids and for guidance on our experimental design, BEI Resources and MR4 for supplying DSM1, and BILS for providing support for the transcriptomic analysis. This study was supported by the Swedish Research Council (VR/2012-2014/521-2011-3377 to M.W.), the Söderberg Foundation and Swedish Academy of Sciences (to M.W.), the Swedish Strategic Foundation (to M.W.), the EU EviMalar Network of Excellence (to M.W.), a Distinguished Professor Award from Karolinska Institutet (to M.W.) and the Swedish Research Council (VR 2013-8778, 2014-4423 and 2016-06264 to S.S.) and the Knut and Alice Wallenberg Foundation (KAW 2011.0081, RiboCORE to S.S.). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

S.C. and M.W. conceived the study. S.C., A.F., J.H.C. and M.P.Q. performed all experiments. C.S.M. and S.S. performed the RTTF assay. M.V. performed the MS experiment. J.J.L.R. and M.G. assisted in CRISPR design. S.B. and A.L. generated the recombinant PAM1.4. N.J. and O.F. performed computational analysis. S.C., A.F., C.S.M., S.S. and M.W. interpreted data and wrote the manuscript.

Corresponding author

Correspondence to Mats Wahlgren.

Ethics declarations

Competing interests

M.W. is a co-founder and member of the board of directors of Modus Therapeutics AB, a company developing drugs for severe malaria. All other authors declare no financial conflicts of interest.

Supplementary information

Supplementary Information

Supplementary Figures 1-9, Supplementary Table 5, Supplementary References. (PDF 20363 kb)

Supplementary Table 1

One spreadsheet summarizing the list of genes deleted on the left arm of chromosome 2 and the right arm of chromosome 9 in 3D7S8.4.2 parasites. (XLSX 39 kb)

Supplementary Table 2

Eight spreadsheets providing a detailed description of all differentially expressed genes between NF54CSA and 3D7S8.4.2 at the four time points collected for the RNAseq experiment. (XLSX 168 kb)

Supplementary Table 3

Eight spreadsheets providing a list of all proteins detected in mass spectrometry from the blue native gel experiment related to Supplementary Fig. 5. (XLSX 89 kb)

Supplementary Table 4

Two spreadsheets describing the sequence similarity of all ribosomal proteins between Plasmodium falciparum and Homo sapiens. (XLSX 41 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chan, S., Frasch, A., Mandava, C. et al. Regulation of PfEMP1–VAR2CSA translation by a Plasmodium translation-enhancing factor. Nat Microbiol 2, 17068 (2017). https://doi.org/10.1038/nmicrobiol.2017.68

Download citation

Further reading