Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes

An Author Correction to this article was published on 25 June 2018

Abstract

To adapt to changing environments, bacteria have evolved numerous pathways that activate stress response genes. In Gram-positive bacteria, the stressosome, a cytoplasmic complex, relays external cues and activates the sigma B regulon. The stressosome is structurally well-characterized in Bacillus, but how it senses stress remains elusive. Here, we report a genome-wide N-terminomic approach in Listeria that strikingly led to the discovery of 19 internal translation initiation sites and 6 miniproteins, among which one, Prli42, is conserved in Firmicutes. Prli42 is membrane-anchored and interacts with orthologues of Bacillus stressosome components. We reconstituted the Listeria stressosome in vitro and visualized its supramolecular structure by electron microscopy. Analysis of a series of Prli42 mutants demonstrated that Prli42 is important for sigma B activation, bacterial growth following oxidative stress and for survival in macrophages. Taken together, our N-terminonic approach unveiled Prli42 as a long-sought link between stress and the stressosome.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A proteogenomic approach to map translation initiation sites (TISs).
Figure 2: An integrated map of Listeria TISs and deviations from the current genome annotation.
Figure 3: Miniprotein Prli42 is highly conserved and interacts with Listeria orthologues of the stressosome.
Figure 4: Membrane miniprotein Prli42 partially tethers RsbR to the bacterial membrane and is essential for the sigma B signalling following oxidative stress and survival in macrophages.

References

  1. 1

    Cossart, P. Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes. Proc. Natl Acad. Sci. USA 108, 19484–19491 (2011).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Glaser, P. et al. Comparative genomics of Listeria species. Science 294, 849–852 (2001).

    CAS  PubMed  Google Scholar 

  3. 3

    Toledo-Arana, A. et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459, 950–956 (2009).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Archambaud, C. et al. Impact of lactobacilli on orally acquired listeriosis. Proc. Natl Acad. Sci. USA 109, 16684–16689 (2012).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Wurtzel, O. et al. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol. Syst. Biol. 8, 583 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Dar, D. et al. Term-Seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352, aad9822 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Li, G. W., Oh, E. & Weissman, J. S. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538–541 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Mohammad, F., Woolstenhulme, C. J., Green, R. & Buskirk, A. R. Clarifying the translational pausing landscape in bacteria by ribosome profiling. Cell Rep. 14, 686–694 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Woolstenhulme, C. J., Guydosh, N. R., Green, R. & Buskirk, A. R. High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep. 11, 13–21 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Gevaert, K. et al. Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol. 21, 566–569 (2003).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Staes, A. et al. Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat. Protoc. 6, 1130–1141 (2011).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Bland, C., Hartmann, E. M., Christie-Oleza, J. A., Fernandez, B. & Armengaud, J. N-terminal-oriented proteogenomics of the marine bacterium Roseobacter denitrificans Och114 using N-succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) labeling and diagonal chromatography. Mol. Cell Proteomics 13, 1369–1381 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Nakahigashi, K. et al. Comprehensive identification of translation start sites by tetracycline-inhibited ribosome profiling. DNA Res. 23, 193–201 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Bienvenut, W. V., Giglione, C. & Meinnel, T. Proteome-wide analysis of the amino terminal status of Escherichia coli proteins at the steady-state and upon deformylation inhibition. Proteomics 15, 2503–2518 (2015).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Chen, D. Z. et al. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39, 1256–1262 (2000).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Becavin, C. et al. Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. mBio 5, e00969-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Renier, S., Micheau, P., Talon, R., Hebraud, M. & Desvaux, M. Subcellular localization of extracytoplasmic proteins in monoderm bacteria: rational secretomics-based strategy for genomic and proteomic analyses. PLoS ONE 7, e42982 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Malys, N. & McCarthy, J. E. Translation initiation: variations in the mechanism can be anticipated. Cell. Mol. Life Sci. 68, 991–1003 (2011).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Chen, N. Y. & Paulus, H. Mechanism of expression of the overlapping genes of Bacillus subtilis aspartokinase II. J. Biol. Chem. 263, 9526–9532 (1988).

    CAS  PubMed  Google Scholar 

  22. 22

    Park, S. K. et al. Site-directed mutagenesis of the dual translational initiation sites of the clpB gene of Escherichia coli and characterization of its gene products. J. Biol. Chem. 268, 20170–20174 (1993).

    CAS  PubMed  Google Scholar 

  23. 23

    Nagy, M. et al. Synergistic cooperation between two ClpB isoforms in aggregate reactivation. J. Mol. Biol. 396, 697–707 (2010).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Lin, T. H., Hu, Y. N. & Shaw, G. C. Two enzymes, TilS and HprT, can form a complex to function as a transcriptional activator for the cell division protease gene ftsH in Bacillus subtilis. J. Biochem. 155, 5–16 (2014).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295–1308 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Tsirigos, K. D., Peters, C., Shu, N., Kall, L. & Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 43, W401–W407 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Marles-Wright, J. et al. Molecular architecture of the ‘stressosome,’ a signal integration and transduction hub. Science 322, 92–96 (2008).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Marles-Wright, J. & Lewis, R. J. The stressosome: molecular architecture of a signalling hub. Biochem. Soc. Trans. 38, 928–933 (2010).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Murray, J. W., Delumeau, O. & Lewis, R. J. Structure of a nonheme globin in environmental stress signaling. Proc. Natl Acad. Sci. USA 102, 17320–17325 (2005).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Milohanic, E. et al. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol. 47, 1613–1625 (2003).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Balakrishnan, R., Oman, K., Shoji, S., Bundschuh, R. & Fredrick, K. The conserved GTPase LepA contributes mainly to translation initiation in Escherichia coli. Nucleic Acids Res. 42, 13370–13383 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Dougan, D. A., Truscott, K. N. & Zeth, K. The bacterial N-end rule pathway: expect the unexpected. Mol. Microbiol. 76, 545–558 (2010).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Yu, X. J., Liu, M., Matthews, S. & Holden, D. W. Tandem translation generates a chaperone for the Salmonella type III secretion system protein SsaQ. J. Biol. Chem. 286, 36098–36107 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Storz, G., Wolf, Y. I. & Ramamurthi, K. S. Small proteins can no longer be ignored. Annu. Rev. Biochem. 83, 753–777 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Martin, J. E., Waters, L. S., Storz, G. & Imlay, J. A. The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese. PLoS Genet. 11, e1004977 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Lippa, A. M. & Goulian, M. Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLoS Genet. 5, e1000788 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Lippa, A. M. & Goulian, M. Perturbation of the oxidizing environment of the periplasm stimulates the PhoQ/PhoP system in Escherichia coli. J. Bacteriol. 194, 1457–1463 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Tiensuu, T., Andersson, C., Ryden, P. & Johansson, J. Cycles of light and dark co-ordinate reversible colony differentiation in Listeria monocytogenes. Mol. Microbiol. 87, 909–924 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Zhang, Z. et al. Rsbv of Listeria monocytogenes contributes to regulation of environmental stress and virulence. Arch. Microbiol. 195, 113–120 (2013).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Kazmierczak, M. J., Mithoe, S. C., Boor, K. J. & Wiedmann, M. Listeria monocytogenes sigma B regulates stress response and virulence functions. J. Bacteriol. 185, 5722–5734 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Jia, X., Wang, J. B., Rivera, S., Duong, D. & Weinert, E. E. An O2-sensing stressosome from a Gram-negative bacterium. Nat. Commun. 7, 12381 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Arnaud, M., Chastanet, A. & Debarbouille, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Appl. Environ. Microbiol. 70, 6887–6891 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Mellin, J. R. et al. A riboswitch-regulated antisense RNA in Listeria monocytogenes. Proc. Natl Acad. Sci. USA. 110, 13132–13137 (2013).

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Balestrino, D. et al. Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes. Appl. Environ Microbiol. 76, 3625–3636 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Lauer, P., Chow, M. Y., Loessner, M. J., Portnoy, D. A. & Calendar, R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184, 4177–4186 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Hastings, J. W. & Morin, J. G. Calcium-triggered light emission in Renilla. A unitary biochemical scheme for coelenterate bioluminescence. Biochem. Biophys. Res. Commun. 37, 493–498 (1969).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Eskandarian, H. A. et al. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341, 1238858 (2013).

    Article  PubMed  Google Scholar 

  48. 48

    Kall, L., Storey, J. D., MacCoss, M. J. & Noble, W. S. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J. Proteome Res. 7, 29–34 (2008).

    Article  PubMed  Google Scholar 

  49. 49

    Martens, L., Vandekerckhove, J. & Gevaert, K. DBToolkit: processing protein databases for peptide-centric proteomics. Bioinformatics 21, 3584–3585 (2005).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Helsens, K. et al. Ms_lims, a simple yet powerful open source laboratory information management system for MS-driven proteomics. Proteomics 10, 1261–1264 (2010).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Helsens, K., Timmerman, E., Vandekerckhove, J., Gevaert, K. & Martens, L. Peptizer, a tool for assessing false positive peptide identifications and manually validating selected results. Mol. Cell. Proteomics 7, 2364–2372 (2008).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Vizcaino, J. A. et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Ma, J., Campbell, A. & Karlin, S. Correlations between Shine–Dalgarno sequences and gene features such as predicted expression levels and operon structures. J. Bacteriol. 184, 5733–5745 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Markham, N. R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Aziz, R. K. et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Tatusova, T., Ciufo, S., Fedorov, B., O'Neill, K. & Tolstoy, I. Refseq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res. 42, D553–D559 (2014).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Jonquieres, R., Bierne, H., Fiedler, F., Gounon, P. & Cossart, P. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol. Microbiol. 34, 902–914 (1999).

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Mengaud, J. et al. Antibodies to the leucine-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. Infect. Immun. 64, 5430–5433 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Archambaud, C., Gouin, E., Pizarro-Cerda, J., Cossart, P. & Dussurget, O. Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes. Mol. Microbiol. 56, 383–396 (2005).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Webb, B. & Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 1137, 1–15 (2014).

    CAS  Article  PubMed  Google Scholar 

  64. 64

    Wu, S. & Zhang, Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res. 35, 3375–3382 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D 59, 1131–1137 (2003).

    Article  PubMed  Google Scholar 

  66. 66

    Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D 53, 240–255 (1997).

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Trott, O. & Olson, A. J. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Tovchigrechko, A. & Vakser, I. A. GRAMM-X public web server for protein–protein docking. Nucleic Acids Res. 34, W310–W314 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to P.C. (European Research Council (ERC) Advanced Grant BacCellEpi (670823), ANR BACNET (BACNET 10-BINF-02-01), ANR Investissement d'Avenir Programme (10-LABX-62-IBEID), Human Frontier Science Program (HFSP; RGP001/2013), ERANET Infect-ERA PROANTILIS (ANR-13-IFEC-0004-02) and the Fondation le Roch les Mousquetaires) and by a grant to M.G.P from the Spanish Ministry of Economy and Competitiveness (BIO2014-55238-R). The authors thank E. Gouin and L. Maranghi for essential technical support, C. O'Byrne and J. Johansson for discussions, C. Thireau for technical support, the Pasteur Ultrapole and C. Rapisarda for help with the EM. The authors thank T. Msadek for providing the L. monocytogenes LO28 ΔclpB strain and the Pasteur Proteomics platform, in particular M. Matondo-Bouzanda and T. Chaze. F.I. received financial support from a Pasteur-Roux Fellowship. L.R. was supported by an HFSP long-term fellowship. A.H.W. was supported by an EMBO long-term fellowship (ALTF 732-2010) and an Institut Carnot–Pasteur Maladies Infectieuses fellowship. P.C. is a Senior International Research Scholar of the Howard Hughes Medical Institute.

Author information

Affiliations

Authors

Contributions

P.C. initiated, conceived and supervised the project. F.I. initiated the project and performed the proteomics analysis and validation of the proteomics work and docking model. N.R. identified the oxidative stress phenotype, constructed nearly all the bacterial strains and performed the analysis of sigma B signalling. L.R. performed the macrophage experiments, the fractionation experiments and the virulence experiments. C.B. made the proteogenomics pipeline and is responsible for the bioinformatic analysis of the paper. M.D. performed the northern blots of Sigma B signalling. J.M. constructed the initial bacterial strains for validation. F.G.d.P. and M.G.P. contributed essential reagents. A.H.W. reconstituted the stressosome and imaged it using EM, and performed the docking model and all of the structural biology. L.R. and P.C. wrote the paper, with editing help and discussions from N.R., M.D., F.I. and A.H.W.

Corresponding author

Correspondence to Pascale Cossart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-8, Legends for Supplementary Tables 1–13. (PDF 15010 kb)

Supplementary Table 1

List of predicted undetectable aTIS in L. monocytogenes EGD-e. (XLSX 457 kb)

Supplementary Table 2

List of 1322 L. monocytogenes EGD-e proteins with detected aTIS. (XLSX 199 kb)

Supplementary Table 3

List of 72 L. monocytogenes EGD-e proteins with leaderless mRNAs. (XLSX 14 kb)

Supplementary Table 4

List of 27 L. monocytogenes EGD-e proteins with multiple TIS. (XLSX 84 kb)

Supplementary Table 5

List of 25 L. monocytogenes EGD-e proteins with a corrected TIS. (XLSX 69 kb)

Supplementary Table 6

List of 2 mis-annotated and 2 missing L. monocytogenes EGD-e proteins. (XLSX 59 kb)

Supplementary Table 7

List of 19 L. monocytogenes EGD-e proteins with detected internal TIS. (XLSX 90 kb)

Supplementary Table 8

List of 6 newly identified miniproteins in L. monocytogenes EGD-e. (XLSX 62 kb)

Supplementary Table 9

Results of the homologue search of Rli42 and the stressosome. (XLSX 533 kb)

Supplementary Table 10

List of L. monocytogenes EGD-e proteins identified and quantified by LCMS-MS after co-immunoprecipitation of Prli42-flag or Prli42-R8A-flag. (XLSX 140 kb)

Supplementary Table 11

Results of the RAST re-annotation of the L. monocytogenes EGD-e genome and comparison with the original annotation by Glaser et al. (referred to as NCBI). (XLSX 410 kb)

Supplementary Table 12

Strains, plasmids and primers used in this study. (XLSX 12 kb)

Supplementary Table 13

Spectral counts and peptide numbers for the different datasets. (XLSX 10 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Impens, F., Rolhion, N., Radoshevich, L. et al. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. Nat Microbiol 2, 17005 (2017). https://doi.org/10.1038/nmicrobiol.2017.5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing