Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease

Abstract

Understanding how microorganisms manipulate plant innate immunity and colonize host cells is a major goal of plant pathology. Here, we report that the fungal nitrooxidative stress response suppresses host defences to facilitate the growth and development of the important rice pathogen Magnaporthe oryzae in leaf cells. Nitronate monooxygenases encoded by NMO genes catalyse the oxidative denitrification of nitroalkanes. We show that the M. oryzae NMO2 gene is required for mitigating damaging lipid nitration under nitrooxidative stress conditions and, consequently, for using nitrate and nitrite as nitrogen sources. On plants, the Δnmo2 mutant strain penetrated host cuticles like wild type, but invasive hyphal growth in rice cells was restricted and elicited plant immune responses that included the formation of cellular deposits and a host reactive oxygen species burst. Development of the M. oryzae effector-secreting biotrophic interfacial complex (BIC) was misregulated in the Δnmo2 mutant. Inhibiting or quenching host reactive oxygen species suppressed rice innate immune responses and allowed the Δnmo2 mutant to grow and develop normally in infected cells. NMO2 is thus essential for mitigating nitrooxidative cellular damage and, in rice cells, maintaining redox balance to avoid triggering plant defences that impact M. oryzae growth and BIC development.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: NMO2, encoding a nitronate monooxygenase, is required for nitrate utilization.
Figure 2: NMO2 is required for growth on media containing nitrate or nitrite as the sole nitrogen source.
Figure 3: NMO2 is required for tolerating nitrooxidative stress.
Figure 4: NMO2 is essential for neutralizing the host ROS burst and suppressing plant innate immune responses.
Figure 5: The Pwl2 effector is mislocalized in Δnmo2 mutant strains during early rice infection.
Figure 6: Δnmo2 mutant strains develop multiple BIC foci by late rice infection.

References

  1. Wilson, R. A. & Talbot, N. J. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7, 185–195 (2009).

    CAS  Article  Google Scholar 

  2. Fernandez, J. & Wilson, R. A. Why no feeding frenzy? Mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae. Mol. Plant Microbe Interact. 25, 1286–1293 (2012).

    CAS  Article  Google Scholar 

  3. Martin-Urdiroz, M., Oses-Ruiz, M., Ryder, L. S. & Talbot, N. J. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genet. Biol. 90, 61–68 (2016).

    CAS  Article  Google Scholar 

  4. Ryder, L. S. & Talbot, N. J. Regulation of appressorium development in pathogenic fungi. Curr. Opin. Plant Biol. 26, 8–13 (2015).

    CAS  Article  Google Scholar 

  5. Marroquin-Guzman, M. & Wilson, R. A. GATA-dependent glutaminolysis drives appressorium formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling. PLoS Pathog. 11, e1004851 (2015).

    Article  Google Scholar 

  6. Dagdas, Y. F. et al. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336, 1590–1595 (2012).

    CAS  Article  Google Scholar 

  7. Kankanala, P., Czymmek, K. & Valent, B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19, 706–724 (2007).

    CAS  Article  Google Scholar 

  8. Fernandez, J. & Wilson, R. A. Cells in cells: morphogenetic and metabolic strategies conditioning rice infection by the blast fungus Magnaporthe oryzae. Protoplasma 251, 37–47 (2014).

    CAS  Article  Google Scholar 

  9. Park, C.-H. et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24, 4748–4762 (2012).

    CAS  Article  Google Scholar 

  10. Mentlak, T. A. et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24, 322–335 (2012).

    CAS  Article  Google Scholar 

  11. Giraldo, M. C. et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat. Commun. 4, 1996 (2013).

  12. Fernandez, J., Marroquin-Guzman, M. & Wilson, R. A. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. Ann. Rev. Phytopathol. 52, 155–174 (2014).

    CAS  Article  Google Scholar 

  13. Chi, M. H., Park, S. Y., Kim, S. & Lee, Y. H. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 5, e1000401 (2009).

    Article  Google Scholar 

  14. Huang, K., Czymmek, K. J., Caplan, J. L., Sweigard, J. A. & Donofrio, N. M. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog. 7, e1001335 (2011).

    CAS  Article  Google Scholar 

  15. Donofrio, N. M. & Wilson, R. A. Redox and rice blast: new tools for dissecting molecular fungal–plant interactions. New Phytol. 201, 367–369 (2014).

    CAS  Article  Google Scholar 

  16. Fernandez, J. et al. Plant defense suppression is mediated by a fungal sirtuin during rice infection by Magnaporthe oryzae. Mol. Micro. 94, 70–88 (2014).

    CAS  Article  Google Scholar 

  17. Fernandez, J. et al. Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a MATE-family pump regulate glucose metabolism during infection. PLoS Genet. 8, e1002673 (2012).

    CAS  Article  Google Scholar 

  18. Fernandez, J. & Wilson, R. A. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. PLoS ONE 9, e87300 (2014).

    Article  Google Scholar 

  19. Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986 (2005).

    CAS  Article  Google Scholar 

  20. Wilson, R. A. & Arst, H. N. Jr. Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the ‘streetwise’ GATA family of transcription factors. Microbiol. Mol. Biol. Rev. 62, 586–596 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilson, R. A., Gibson, R. P., Quispe, C. F., Littlechild, J. A. & Talbot, N. J. An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proc. Natl Acad. Sci. USA 107, 21902–21907 (2010).

    CAS  Article  Google Scholar 

  22. Wilson, R. A. et al. Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J. 26, 3673–3685 (2007).

    CAS  Article  Google Scholar 

  23. Marcos, A. T. et al. Nitric oxide synthesis by nitrate reductase is regulated during development in Aspergillus. Mol. Microbiol. 99, 15–33 (2016).

    CAS  Article  Google Scholar 

  24. Corpas, F. J. & Barroso, J. B. Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol. 199, 633–635 (2013).

    CAS  Article  Google Scholar 

  25. O'Donnell, V. B. & Freeman, B. A. Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease. Circ. Res. 88, 12–21 (2001).

    CAS  Article  Google Scholar 

  26. Pacher, P., Beckman, J. S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    CAS  Article  Google Scholar 

  27. Vandelle, E. & Delledonne, M. Peroxynitrite formation and function in plants. Plant Sci. 181, 534–539 (2011).

    CAS  Article  Google Scholar 

  28. Nathan, C. The moving frontier in nitric oxide-dependent signaling. Sci. STKE 2004, pe52 (2004).

    PubMed  Google Scholar 

  29. Rubbo, H. & Radi, R. Protein and lipid nitration: role in redox signaling and injury. Biochim. Biophys. Acta 1780, 1318–1324 (2008).

    CAS  Article  Google Scholar 

  30. Batinić-Haberle, I. et al. Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two different models of oxidative stress injuries, SOD-specific E. coli model and carrageenan-induced pleurisy. Free Radic. Biol. Med. 46, 192–201 (2009).

    Article  Google Scholar 

  31. Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288, 481–487 (1991).

    CAS  Article  Google Scholar 

  32. Ischiropoulos, H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356, 1–11 (1998).

    CAS  Article  Google Scholar 

  33. Hao, P. et al. Herbivore-induced callose depositions on the sieve plates of rice: an important mechanism for host resistance. Plant Physiol. 146, 1810–1820 (2008).

    CAS  Article  Google Scholar 

  34. Khang, C. H. et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22, 1388–13403 (2010).

    CAS  Article  Google Scholar 

  35. Brown, A. J., Haynes, K. & Quinn, J. Nitrosative and oxidative stress responses in fungal pathogenicity. Curr. Opin. Microbiol. 12, 384–391 (2009).

    CAS  Article  Google Scholar 

  36. Francis, K., Russell, B. & Gadda, G. Involvement of a flavosemiquinone in the enzymatic oxidation of nitroalkanes catalyzed by 2-nitropropane dioxygenase. J. Biol. Chem. 280, 5195–51204 (2005).

    CAS  Article  Google Scholar 

  37. Bellin, D., Asai, S., Delledonne, M. & Yoshioka, H. Nitric oxide as a mediator for defense responses. Mol. Plant Microbe Interact. 26, 271–277 (2013).

    CAS  Article  Google Scholar 

  38. Li, G., Marroquin-Guzman, M. & Wilson, R. A. Chromatin immunoprecipitation (ChIP) assay for detecting direct and indirect protein–DNA interactions in Magnaporthe oryzae. Bio Protoc 5, e1643 (2015).

    Google Scholar 

  39. Kido, T., Soda, K., Suzuki, T. & Asada, K. A new oxygenase, 2-nitropropane dioxygenase of Hansenula mrakii. Enzymologic and spectrophotometric properties. J. Biol. Chem. 251, 6994–7000 (1976).

    CAS  PubMed  Google Scholar 

  40. Grossi, L. & D'Angelo, S. Sodium nitroprusside: mechanism of NO release mediated by sulfhydryl-containing molecules. J. Med. Chem. 48, 2622–2626 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank B. Valent (Kansas State University) for the gift of pBV591. This work was supported by grants from the National Science Foundation (IOS-1557943) and the USDA-NIFA (2014-67013-21559) to R.A.W. A UNL ARD bridging fund award supported M.M.-G.

Author information

Authors and Affiliations

Authors

Contributions

R.A.W. conceived the project, designed the experiments and interpreted the data. M.M.-G., D.H., J.D.W., C.E., T.J.B. and R.A.W. performed experiments and analysed the data. R.A.W. wrote the manuscript.

Corresponding author

Correspondence to Richard A. Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–3; Supplementary Tables 1–2 (PDF 574 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marroquin-Guzman, M., Hartline, D., Wright, J. et al. The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease. Nat Microbiol 2, 17054 (2017). https://doi.org/10.1038/nmicrobiol.2017.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.54

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing