Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A global analysis of transcription reveals two modes of Spt4/5 recruitment to archaeal RNA polymerase

Abstract

The archaeal transcription apparatus is closely related to the eukaryotic RNA polymerase (RNAP) II system, while archaeal genomes are more similar to bacteria with densely packed genes organized in operons. This makes understanding transcription in archaea vital, both in terms of molecular mechanisms and evolution. Very little is known about how archaeal cells orchestrate transcription on a systems level. We have characterized the genome-wide occupancy of the Methanocaldococcus jannaschii transcription machinery and its transcriptome. Our data reveal how the TATA and BRE promoter elements facilitate recruitment of the essential initiation factors TATA-binding protein and transcription factor B, respectively, which in turn are responsible for the loading of RNAP into the transcription units. The occupancies of RNAP and Spt4/5 strongly correlate with each other and with RNA levels. Our results show that Spt4/5 is a general elongation factor in archaea as its presence on all genes matches RNAP. Spt4/5 is recruited proximal to the transcription start site on the majority of transcription units, while on a subset of genes, including rRNA and CRISPR loci, Spt4/5 is recruited to the transcription elongation complex during early elongation within 500 base pairs of the transcription start site and akin to its bacterial homologue NusG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TSS map and promoter motif analysis.
Figure 2: Correlation between TBP/TFB binding to the promoter and RNA levels.
Figure 3: The Rpo4/7 stalk and RNAP core remain associated through the transcription cycle.
Figure 4: PIC formation and promoter strength in vitro.
Figure 5: Archaeal Spt4/5 is a general elongation factor that is recruited to RNAP via two distinct modes.
Figure 6: Initial stages of the transcription cycle in archaea.

Similar content being viewed by others

References

  1. Werner, F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol. 16, 247–250 (2008).

    Article  CAS  Google Scholar 

  2. Werner, F. & Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 9, 85–98 (2011).

    Article  CAS  Google Scholar 

  3. Korkhin, Y. et al. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure. PLoS Biol. 7, e1000102 (2009).

    Article  Google Scholar 

  4. Hirtreiter, A., Grohmann, D. & Werner, F. Molecular mechanisms of RNA polymerase—the F/E (RPB4/7) complex is required for high processivity in vitro. Nucleic Acids Res. 38, 585–596 (2010).

    Article  CAS  Google Scholar 

  5. Li, E., Reich, C. I. & Olsen, G. J. A whole-genome approach to identifying protein binding sites: promoters in Methanocaldococcus (Methanococcus) jannaschii. Nucleic Acids Res. 36, 6948–6958 (2008).

    Article  CAS  Google Scholar 

  6. Zhang, J., Li, E. & Olsen, G. J. Protein-coding gene promoters in Methanocaldococcus (Methanococcus) jannaschii. Nucleic Acids Res. 37, 3588–3601 (2009).

    Article  CAS  Google Scholar 

  7. Werner, F. & Weinzierl, R. O. A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol. Cell 10, 635–646 (2002).

    Article  CAS  Google Scholar 

  8. Gietl, A. et al. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways. Nucleic Acids Res. 42, 6219–6231 (2014).

    Article  CAS  Google Scholar 

  9. Blombach, F. et al. Archaeal TFEα/β is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39. eLife 4, e08378 (2015).

    Article  Google Scholar 

  10. Grohmann, D. et al. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol. Cell 43, 263–274 (2011).

    Article  CAS  Google Scholar 

  11. Werner, F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J. Mol. Biol. 417, 13–27 (2012).

    Article  CAS  Google Scholar 

  12. Sevostyanova, A., Svetlov, V., Vassylyev, D. G. & Artsimovitch, I. The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex. Proc. Natl Acad. Sci. USA 105, 865–870 (2008).

    Article  CAS  Google Scholar 

  13. Mayer, A. et al. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272–1278 (2010).

    Article  CAS  Google Scholar 

  14. Mooney, R. A. et al. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 33, 97–108 (2009).

    Article  CAS  Google Scholar 

  15. Kadonaga, J. T. Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip. Rev. Dev. Biol. 1, 40–51 (2012).

    Article  CAS  Google Scholar 

  16. Nagy, J. et al. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. Nat. Commun. 6, 6161 (2015).

    Article  CAS  Google Scholar 

  17. Schulz, S. et al. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle. Proc. Natl Acad. Sci. USA 113, E1816–E1825 (2016).

    Article  CAS  Google Scholar 

  18. Bell, S. D., Jaxel, C., Nadal, M., Kosa, P. F. & Jackson, S. P. Temperature, template topology, and factor requirements of archaeal transcription. Proc. Natl Acad. Sci. USA 95, 15218–15222 (1998).

    Article  CAS  Google Scholar 

  19. Jäger, D., Förstner, K. U., Sharma, C. M., Santangelo, T. J. & Reeve, J. N. Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis. BMC Genomics 15, 684 (2014).

    Article  Google Scholar 

  20. Jäger, D. et al. Deep sequencing analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen availability. Proc. Natl Acad. Sci. USA 106, 21878–21882 (2009).

    Article  Google Scholar 

  21. Li, J. et al. Global mapping transcriptional start sites revealed both transcriptional and post-transcriptional regulation of cold adaptation in the methanogenic archaeon Methanolobus psychrophilus. Sci. Rep. 5, 9209 (2015).

    Article  CAS  Google Scholar 

  22. Wurtzel, O. et al. A single-base resolution map of an archaeal transcriptome. Genome Res. 20, 133–141 (2010).

    Article  CAS  Google Scholar 

  23. Babski, J. et al. Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq). BMC Genomics 17, 629 (2016).

    Article  Google Scholar 

  24. Seitzer, P., Wilbanks, E. G., Larsen, D. J. & Facciotti, M. T. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs. BMC Bioinformatics 13, 317 (2012).

    Article  Google Scholar 

  25. Blombach, F., Smollett, K. L., Grohmann, D. & Werner, F. Molecular mechanisms of transcription initiation—structure, function, and evolution of TFE/TFIIE-like factors and open complex formation. J. Mol. Biol. 428, 2592–2606 (2016).

    Article  CAS  Google Scholar 

  26. Werner, F. & Weinzierl, R. O. Direct modulation of RNA polymerase core functions by basal transcription factors. Mol. Cell. Biol. 25, 8344–8355 (2005).

    Article  CAS  Google Scholar 

  27. Qureshi, S. A., Bell, S. D. & Jackson, S. P. Factor requirements for transcription in the archaeon Sulfolobus shibatae. EMBO J. 16, 2927–2936 (1997).

    Article  CAS  Google Scholar 

  28. Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501–504 (2010).

    Article  CAS  Google Scholar 

  29. Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504–508 (2010).

    Article  CAS  Google Scholar 

  30. French, S. L., Santangelo, T. J., Beyer, A. L. & Reeve, J. N. Transcription and translation are coupled in Archaea. Mol. Biol. Evol. 24, 893–895 (2007).

    Article  CAS  Google Scholar 

  31. Brenneis, M., Hering, O., Lange, C. & Soppa, J. Experimental characterization of Cis-acting elements important for translation and transcription in halophilic Archaea. PLoS Genet. 3, e229 (2007).

    Article  Google Scholar 

  32. Torarinsson, E., Klenk, H. P. & Garrett, R. A. Divergent transcriptional and translational signals in Archaea. Environ. Microbiol. 7, 47–54 (2005).

    Article  CAS  Google Scholar 

  33. Koide, T. et al. Prevalence of transcription promoters within archaeal operons and coding sequences. Mol. Syst. Biol. 5, 285 (2009).

    Article  Google Scholar 

  34. Toffano-Nioche, C. et al. RNA at 92 °C: the non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi. RNA Biol. 10, 1211–1220 (2013).

    Article  CAS  Google Scholar 

  35. Yang, C., Bolotin, E., Jiang, T., Sladek, F. M. & Martinez, E. Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene 389, 52–65 (2007).

    Article  CAS  Google Scholar 

  36. Qureshi, S. A. Role of the Sulfolobus shibatae viral T6 initiator in conferring promoter strength and in influencing transcription start site selection. Can. J. Microbiol. 52, 1136–1140 (2006).

    Article  CAS  Google Scholar 

  37. Bell, S. D. & Jackson, S. P. The role of transcription factor B in transcription initiation and promoter clearance in the archaeon Sulfolobus acidocaldarius. J. Biol. Chem. 275, 12934–12940 (2000).

    Article  CAS  Google Scholar 

  38. Shultzaberger, R. K., Chen, Z., Lewis, K. A. & Schneider, T. D. Anatomy of Escherichia coli σ70 promoters. Nucleic Acids Res. 35, 771–788 (2007).

    Article  CAS  Google Scholar 

  39. Basu, R. S. et al. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme. J. Biol. Chem. 289, 24549–24559 (2014).

    Article  CAS  Google Scholar 

  40. Ehrensberger, A. H., Kelly, G. P. & Svejstrup, J. Q. Mechanistic interpretation of promoter-proximal peaks and RNAPII density maps. Cell 154, 713–715 (2013).

    Article  CAS  Google Scholar 

  41. Hirtreiter, A. et al. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res. 38, 4040–4051 (2010).

    Article  CAS  Google Scholar 

  42. Diamant, G., Bahat, A. & Dikstein, R. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes. Nat. Commun. 7, 11547 (2016).

    Article  CAS  Google Scholar 

  43. Larochelle, S. et al. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol. 19, 1108–1115 (2012).

    Article  CAS  Google Scholar 

  44. Arnvig, K. B. et al. Evolutionary comparison of ribosomal operon antitermination function. J. Bacteriol. 190, 7251–7257 (2008).

    Article  CAS  Google Scholar 

  45. Micorescu, M. et al. archaeal transcription: function of an alternative transcription factor B from Pyrococcus furiosus. J. Bacteriol. 190, 157–167 (2008).

    Article  CAS  Google Scholar 

  46. Jensen, K. F. & Pedersen, S. Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components. Microbiol. Rev. 54, 89–100 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Peeters, E., Driessen, R. P., Werner, F. & Dame, R. T. The interplay between nucleoid organization and transcription in archaeal genomes. Nat. Rev. Microbiol. 13, 333–341 (2015).

    Article  CAS  Google Scholar 

  48. Ouhammouch, M., Dewhurst, R. E., Hausner, W., Thomm, M. & Geiduschek, E. P. Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc. Natl Acad. Sci. USA 100, 5097–5102 (2003).

    Article  CAS  Google Scholar 

  49. Churchman, L. S. & Weissman, J. S. Native elongating transcript sequencing (NET-seq). Curr. Protoc. Mol. Biol. 4, 1–17 (2012).

    Google Scholar 

  50. Nojima, T. et al. Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526–540 (2015).

    Article  CAS  Google Scholar 

  51. Jones, W. J., Leigh, J. A., Mayer, F., Woese, C. R. & Wolfe, R. S. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136, 254–261 (1983).

    Article  CAS  Google Scholar 

  52. Smollett, K., Blombach, F. & Werner, F. Transcription in Archaea: preparation of Methanocaldococcus jannaschii transcription machinery. Methods Mol. Biol. 1276, 291–303 (2015).

    Article  CAS  Google Scholar 

  53. Reichelt, R., Gindner, A., Thomm, M. & Hausner, W. Genome-wide binding analysis of the transcriptional regulator TrmBL1 in Pyrococcus furiosus. BMC Genomics 17, 40 (2016).

    Article  Google Scholar 

  54. Liu, W., Vierke, G., Wenke, A. K., Thomm, M. & Ladenstein, R. Crystal structure of the archaeal heat shock regulator from Pyrococcus furiosus: a molecular chimera representing eukaryal and bacterial features. J. Mol. Biol. 369, 474–488 (2007).

    Article  CAS  Google Scholar 

  55. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (2010); http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  56. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  57. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  Google Scholar 

  58. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014); http://www.R-project.org

  59. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. Weblogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  Google Scholar 

  60. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  Google Scholar 

  61. Smollett, K., Blombach, F. & Werner, F. Transcription in Archaea: in vitro transcription assays for mjRNAP. Methods Mol. Biol. 1276, 305–314 (2015).

    Article  CAS  Google Scholar 

  62. Arnvig, K. B. & Young, D. B. Identification of small RNAs in Mycobacterium tuberculosis. Mol. Microbiol. 73, 397–408 (2009).

    Article  CAS  Google Scholar 

  63. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank J. Bähler and D. Bitton for advice throughout this project. The authors also thank T. Arnvig, D. Grohman and other members of the RNAP laboratory for encouragement and critical reading of the manuscript. Research in the RNAP laboratory at University College London is funded by Wellcome Trust Investigator Award WT096553MA (to F.W.).

Author information

Authors and Affiliations

Authors

Contributions

K.S. designed and performed experiments, analysed data and wrote the manuscript. F.B. performed experiments and wrote the manuscript. R.R. and M.T. helped with fermenter growth and crosslinking, and provided biomass. F.W. conceptualized the study, designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Finn Werner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Notes; Supplementary Table 1 and 4–6; Supplementary Figures 1–7; Supplementary References. (PDF 8146 kb)

Supplementary Table 2

Identified TSS and their promoter elements. (XLSX 144 kb)

Supplementary Table 3

Gene organisation of Mja. (XLSX 566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smollett, K., Blombach, F., Reichelt, R. et al. A global analysis of transcription reveals two modes of Spt4/5 recruitment to archaeal RNA polymerase. Nat Microbiol 2, 17021 (2017). https://doi.org/10.1038/nmicrobiol.2017.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.21

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing