Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Mesh–Duox pathway regulates homeostasis in the insect gut

Abstract

The metazoan gut harbours complex communities of commensal and symbiotic bacterial microorganisms. The quantity and quality of these microorganisms fluctuate dynamically in response to physiological changes. The mechanisms that hosts have developed to respond to and manage such dynamic changes and maintain homeostasis remain largely unknown. Here, we identify a dual oxidase (Duox)-regulating pathway that contributes to maintaining homeostasis in the gut of both Aedes aegypti and Drosophila melanogaster. We show that a gut-membrane-associated protein, named Mesh, plays an important role in controlling the proliferation of gut bacteria by regulating Duox expression through an Arrestin-mediated MAPK JNK/ERK phosphorylation cascade. Expression of both Mesh and Duox is correlated with the gut bacterial microbiome, which, in mosquitoes, increases dramatically soon after a blood meal. Ablation of Mesh abolishes Duox induction, leading to an increase of the gut microbiome load. Our study reveals that the Mesh-mediated signalling pathway is a central homeostatic mechanism of the insect gut.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mesh maintains gut microbiome homeostasis by controlling AaDuox expression in A. aegypti.
Figure 2: Regulation of commensal microbiome and DmDuox expression in the guts of DmMesh RNAi Drosophila.
Figure 3: Mesh regulates AaDuox expression via Arrestin-mediated MAPK phosphorylation in A. aegypti.
Figure 4: Role of the Mesh-Arrestin-ERK/JNK-MAPK signalling cascade in DmDuox regulation in Drosophila.
Figure 5: AaMesh-mediated AaDuox regulatory pathway in response to commensal bacteria in the guts of A. aegypti.
Figure 6: DmMesh-mediated DmDuox regulation in response to commensal bacteria in Drosophila.

References

  1. 1

    Koropatnick, T. A. et al. Microbial factor-mediated development in a host–bacterial mutualism. Science 306, 1186–1188 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Macdonald, T. T. & Monteleone, G. Immunity, inflammation, and allergy in the gut. Science 307, 1920–1925 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host–bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  Google Scholar 

  4. 4

    Clark, R. I. et al. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell Rep. 12, 1656–1667 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8, 411–420 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Ha, E. M. et al. Regulation of DUOX by the Gαq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Dev. Cell 16, 386–397 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Ha, E. M. et al. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microorganisms in Drosophila gut. Nat. Immunol. 10, 949–957 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Lhocine, N. et al. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe. 4, 147–158 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Paredes, J. C., Welchman, D. P., Poidevin, M. & Lemaitre, B. Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection. Immunity 35, 770–779 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Ryu, J. H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Cullen, T. W. et al. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347, 170–175 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Pang, X. J. et al. Mosquito C-type lectins maintain gut microbiome homeostasis. Nat. Microbiol. 1, 16023 (2016).

    CAS  Article  Google Scholar 

  13. 13

    Hegde, S., Rasgon, J. L. & Hughes, G. L. The microbiome modulates arbovirus transmission in mosquitoes. Curr. Opin. Virol. 15, 97–102 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Kanellopoulos, J. Studying host–microbiota interactions in Drosophila melanogaster. Biomed. J. 38, 275 (2015).

    Article  Google Scholar 

  15. 15

    Oliveira, J. H. et al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog. 7, e1001320 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Yao, Z. et al. The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis. ISME J. 10, 1037–1050 (2016).

    CAS  Article  Google Scholar 

  17. 17

    Diaz-Albiter, H., Sant'Anna, M. R., Genta, F. A. & Dillon, R. J. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the sand phlebotomine fly Lutzomyia longipalpis. J. Biol. Chem. 287, 23995–24003 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Bae, Y. S., Choi, M. K. & Lee, W. J. Dual oxidase in mucosal immunity and host–microorganism homeostasis. Trends Immunol. 31, 278–287 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Waterhouse, R. M. et al. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316, 1738–1743 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Casasnovas, J. M., Larvie, M. & Stehle, T. Crystal structure of two CD46 domains reveals an extended measles virus-binding surface. EMBO J. 18, 2911–2922 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Dörig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993).

    Article  Google Scholar 

  23. 23

    Xiao, X. et al. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides. PLoS Pathog. 10, e1004027 (2014).

    Article  Google Scholar 

  24. 24

    Xiao, X. et al. A neuron-specific antiviral mechanism prevents lethal flaviviral infection of mosquitoes. PLoS Pathog. 11, e1004848 (2015).

    Article  Google Scholar 

  25. 25

    Izumi, Y., Yanagihashi, Y. & Furuse, M. A novel protein complex, Mesh-Ssk, is required for septate junction formation in the Drosophila midgut. J. Cell Sci. 125, 4923–4933 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Rämet, M. et al. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 15, 1027–1038 (2001).

    Article  Google Scholar 

  27. 27

    Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J. & Barillas-Mury, C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327, 1644–1648 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Chintapalli, V. R., Wang, J. & Dow, J. A. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39, 715–720 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Robinson, S. W., Herzyk, P., Dow, J. A. & Leader, D. P. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster. Nucleic Acids Res. 41, D744–D750 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Rera, M., Clark, R. I. & Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl Acad. Sci. USA 109, 21528–21533 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Jones, R. M. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 32, 3017–3028 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Chakrabarti, S., Poidevin, M. & Lemaitre, B. The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine. PLoS Genet. 10, e1004659 (2014).

    Article  Google Scholar 

  33. 33

    DeWire, S. M., Ahn, S., Lefkowitz, R. J. & Shenoy, S. K. Beta-arrestins and cell signaling. Annu. Rev. Physiol. 69, 483–510 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Ramirez, J. L. et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl. Trop. Dis. 6, e1561 (2012).

    Article  Google Scholar 

  35. 35

    Nittaya Pitiwittayakul, P. Y., Winai Chaipitakchonlatarn, Y. Y. & Theeragool, G. Acetobacter thailandicus sp. nov., for a strain isolated in Thailand. Ann. Microbiol. 65, 1855–1863 (2015).

    Article  Google Scholar 

  36. 36

    Chaston, J. M., Newell, P. D. & Douglas, A. E. Metagenome-wide association of microbial determinants of host phenotype in Drosophila melanogaster. mBio 5, e01631 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Sommer, F. & Backhed, F. The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium. Mucosal Immunol. 8, 372–379 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Lee, K. A. et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut–microorganism homeostasis in Drosophila. Cell 153, 797–811 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Wang, W. X. et al. Molecular and functional characterization of a c-type lysozyme from the Asian corn borer, Ostrinia furnacalis. J. Insect. Sci. 9, 17–29 (2009).

    Article  Google Scholar 

  40. 40

    Yu, L. P., Sun, B. G., Li, J. & Sun, L. Characterization of a c-type lysozyme of Scophthalmus maximus: expression, activity, and antibacterial effect. Fish Shellfish Immunol. 34, 46–54 (2013).

    Article  Google Scholar 

  41. 41

    Gravato-Nobre, M. J., Vaz, F., Filipe, S., Chalmers, R. & Hodgkin, J. The invertebrate lysozyme effector ILYS-3 is systemically activated in response to danger signals and confers antimicrobial protection in C. elegans. PLoS Pathog. 12, e1005826 (2016).

    Article  Google Scholar 

  42. 42

    Liu, Y. et al. Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention. PLoS Pathog. 10, e1003931 (2014).

    Article  Google Scholar 

  43. 43

    Cheng, G. et al. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142, 714–725 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Yu, Z. et al. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195, 289–291 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Kim, H. J., Lee, H. J., Kim, H., Cho, S. W. & Kim, J. S. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19, 1279–1288 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Ni, J. Q. et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat. Methods 8, 405–407 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Xi, Z., Ramirez, J. L. & Dimopoulos, G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 4, e1000098 (2008).

    Article  Google Scholar 

  48. 48

    Huang, Y., Ng, F. S. & Jackson, F. R. Comparison of larval and adult Drosophila astrocytes reveals stage-specific gene expression profiles. G3 (Bethesda) 5, 551–558 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the National Key Research and Development Plan of China (2016YFD0500400, 2016YFC1201000 and 2016ZX10004001-008), grants from the National Natural Science Foundation of China (81422028, 81571975, 61472205, 31171278 and 31271542) and a grant from the US National Institutes of Health (AI103807). The authors thank W.-J. Lee from Seoul National University for providing Erwinia carotovora carotovora 15 for the study. The authors thank G.K. Christophides from Imperial College London for providing critical suggestions for this manuscript. G.C. is a Newton Advanced Fellow (awarded by the Academy of Medical Sciences and the Newton Fund) and a Janssen Investigator of Tsinghua University. The authors acknowledge technical support from the Core Facility of the Center for Life Sciences and Center of Biomedical Analysis (Tsinghua University).

Author information

Affiliations

Authors

Contributions

G.C. designed the experiments and wrote the manuscript. X.X. performed the majority of the experiments and analysed data. X.P., R.Z. and Y.Z. helped with RNA isolation and qPCR detection. L.Y. and G.G. provided the Drosophila systems and contributed to the investigations in Drosophila. P.W. contributed experimental suggestions and strengthened the writing of the manuscript. All authors reviewed, critiqued and provided comments to the text.

Corresponding authors

Correspondence to Guanjun Gao or Gong Cheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–21, Supplementary Tables 1–6. (PDF 2854 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Yang, L., Pang, X. et al. A Mesh–Duox pathway regulates homeostasis in the insect gut. Nat Microbiol 2, 17020 (2017). https://doi.org/10.1038/nmicrobiol.2017.20

Download citation

Further reading

Search

Quick links