Abstract
Advances in our ability to systematically introduce and track controlled genetic variance in microorganisms have, in the past decade, fuelled high-throughput reverse genetics approaches. When coupled to quantitative readouts, such approaches are extremely powerful at elucidating gene function and providing insights into the underlying pathways and the overall cellular network organization. Yet, until now, all efforts to quantify microbial macroscopic phenotypes have been restricted to monitoring growth in a small number of model microorganisms. We have developed an image analysis software named Iris, which allows for systematic exploration of a number of orthogonal-to-growth processes, including biofilm formation, colony morphogenesis, envelope biogenesis, sporulation and reporter activity. In addition, Iris provides more sensitive growth measurements than currently available software and is compatible with a variety of different microorganisms, as well as with endpoint or kinetic data. We used Iris to reanalyse existing chemical genomics data in Escherichia coli and to perform proof-of-principle screens on colony biofilm formation and morphogenesis of different bacterial species and the pathogenic fungus Candida albicans. We thereby recapitulated existing knowledge but also identified a plethora of additional genes and pathways involved in both processes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
CRISPR interference-based gene repression in the plant growth promoter Paenibacillus sonchi genomovar Riograndensis SBR5
Applied Microbiology and Biotechnology Open Access 09 April 2020
-
An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation
Nature Communications Open Access 19 September 2019
-
Gene flow contributes to diversification of the major fungal pathogen Candida albicans
Nature Communications Open Access 08 June 2018
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Brochado, A. R. & Typas, A. High-throughput approaches to understanding gene function and mapping network architecture in bacteria. Curr. Opin. Microbiol. 16, 199–206 (2013).
Gray, A. N. et al. High-throughput bacterial functional genomics in the sequencing era. Curr. Opin. Microbiol. 27, 86–95 (2015).
Auer, G. K. et al. Mechanical genomics identifies diverse modulators of bacterial cell stiffness. Cell Syst. 2, 402–411 (2016).
Collins, S. R., Schuldiner, M., Krogan, N. J. & Weissman, J. S. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol. 7, R63 (2006).
Lawless, C., Wilkinson, D. J., Young, A., Addinall, S. G. & Lydall, D. A. Colonyzer: automated quantification of micro-organism growth characteristics on solid agar. BMC Bioinformatics 11, 287 (2010).
Dittmar, J. C., Reid, R. J. D. & Rothstein, R. Screenmill: a freely available software suite for growth measurement, analysis and visualization of high-throughput screen data. BMC Bioinformatics 11, 353 (2010).
Young, B. P. & Loewen, C. J. R. Balony: a software package for analysis of data generated by synthetic genetic array experiments. BMC Bioinformatics 14, 354 (2013).
Wagih, O. & Parts, L. gitter: a robust and accurate method for quantification of colony sizes from plate images. G3 (Bethesda) 4, 547–552 (2014).
Takeuchi, R. et al. Colony-live—a high-throughput method for measuring microbial colony growth kinetics—reveals diverse growth effects of gene knockouts in Escherichia coli. BMC Microbiol. 14, 171 (2014).
Noble, S. M., French, S., Kohn, L. A., Chen, V. & Johnson, A. D. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat. Genet. 42, 590–598 (2010).
Ryan, O. et al. Global gene deletion analysis exploring yeast filamentous growth. Science 337, 1353–1356 (2012).
Cabeen, M. T., Leiman, S. A. & Losick, R. Colony-morphology screening uncovers a role for the Pseudomonas aeruginosa nitrogen-related phosphotransferase system in biofilm formation. Mol. Microbiol. 99, 557–570 (2016).
Paradis-Bleau, C., Kritikos, G., Orlova, K., Typas, A. & Bernhardt, T. G. A genome-wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism. PLoS Genet. 10, e1004056 (2014).
Peters, J. M. et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506 (2016).
Shiver, A. L. et al. A chemical-genomic screen of neglected antibiotics reveals illicit transport of kasugamycin and blasticidin S. PLoS Genet. 12, e1006124 (2016).
Koo, B. M. et al. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis (in the press).
Schuldiner, M., Collins, S. R., Weissman, J. S. & Krogan, N. J. Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions. Methods 40, 344–352 (2006).
Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).
Nichols, R. J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143–156 (2011).
Ryan, C. J. et al. Hierarchical modularity and the evolution of genetic interactomes across species. Mol. Cell 46, 691–704 (2012).
Brown, J. C. et al. Unraveling the biology of a fungal meningitis pathogen using chemical genetics. Cell 159, 1168–1187 (2014).
Serra, D. O., Richter, A. M. & Hengge, R. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195, 5540–5554 (2013).
Ha, D. G., Richman, M. E. & O'Toole, G. A. Deletion mutant library for investigation of functional outputs of cyclic diguanylate metabolism in Pseudomonas aeruginosa PA14. Appl. Environ. Microbiol. 80, 3384–3393 (2014).
Okegbe, C., Price-Whelan, A. & Dietrich, L. E. Redox-driven regulation of microbial community morphogenesis. Curr. Opin. Microbiol. 18, 39–45 (2014).
Hoffman, L. R. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436, 1171–1175 (2005).
Cho, S. H. et al. Detecting envelope stress by monitoring β-barrel assembly. Cell 159, 1652–1664 (2014).
Majdalani, N. & Gottesman, S. The Rcs phosphorelay: a complex signal transduction system. Annu. Rev. Microbiol. 59, 379–405 (2005).
Serra, D. O. & Hengge, R. Stress responses go three dimensional—the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ. Microbiol. 16, 1455–1471 (2014).
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).
Liberati, N. T. et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl Acad. Sci. USA 103, 2833–2838 (2006).
Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Romling, U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 1452–1463 (2001).
Evans, M. L. et al. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol. Cell 57, 445–455 (2015).
Hover, B. M., Tonthat, N. K., Schumacher, M. A. & Yokoyama, K. Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis. Proc. Natl Acad. Sci. USA 112, 6347–6352 (2015).
Kozmin, S. G. & Schaaper, R. M. Genetic characterization of moaB mutants of Escherichia coli. Res. Microbiol. 164, 689–694 (2013).
Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7, 263–273 (2009).
Wolska, K. I., Grudniak, A. M., Rudnicka, Z. & Markowska, K. Genetic control of bacterial biofilms. J. Appl. Genet. 57, 225–238 (2016).
D'Argenio, D. A., Calfee, M. W., Rainey, P. B. & Pesci, E. C. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol. 184, 6481–6489 (2002).
Dietrich, L. E., Teal, T. K., Price-Whelan, A. & Newman, D. K. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321, 1203–1206 (2008).
Recinos, D. A. et al. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc. Natl Acad. Sci. USA 109, 19420–19425 (2012).
Dietrich, L. E. et al. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J. Bacteriol. 195, 1371–1380 (2013).
Mann, E. E. & Wozniak, D. J. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev. 36, 893–916 (2012).
Burrows, L. L. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol. 66, 493–520 (2012).
Persat, A., Inclan, Y. F., Engel, J. N., Stone, H. A. & Gitai, Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 112, 7563–7568 (2015).
Oliveira, N. M., Foster, K. R. & Durham, W. M. Single-cell twitching chemotaxis in developing biofilms. Proc. Natl Acad. Sci. USA 113, 6532–6537 (2016).
Kazmierczak, B. I., Lebron, M. B. & Murray, T. S. Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol. Microbiol. 60, 1026–1043 (2006).
Sampedro, I., Parales, R. E., Krell, T. & Hill, J. E. Pseudomonas chemotaxis. FEMS Microbiol. Rev. 39, 17–46 (2015).
Typas, A. & Sourjik, V. Bacterial protein networks: properties and functions. Nat. Rev. Microbiol. 13, 559–572 (2015).
Kuchma, S. L., Griffin, E. F. & O'Toole, G. A. Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility. J. Bacteriol. 194, 5388–5403 (2012).
Asally, M. et al. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc. Natl Acad. Sci. USA 109, 18891–18896 (2012).
Homann, O. R., Dea, J., Noble, S. M. & Johnson, A. D. A phenotypic profile of the Candida albicans regulatory network. PLoS Genet. 5, e1000783 (2009).
Nobile, C. J. et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148, 126–138 (2012).
Fox, E. P. et al. An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol. Microbiol. 96, 1226–1239 (2015).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Typas, A. et al. Regulation of peptidoglycan synthesis by outer membrane proteins. Cell 143, 1097–1109 (2010).
Porwollik, S. et al. Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium. PLoS ONE 9, e99820 (2014).
Takhar, H. K., Kemp, K., Kim, M., Howell, P. L. & Burrows, L. L. The platform protein is essential for type IV pilus biogenesis. J. Biol. Chem. 288, 9721–9728 (2013).
Baryshnikova, A. et al. Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat. Methods 7, 1017–1024 (2010).
Wagih, O. et al. SGAtools: one-stop analysis and visualization of array-based genetic interaction screens. Nucleic Acids Res. 41, W591–W596 (2013).
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).
Mao, F., Dam, P., Chou, J., Olman, V. & Xu, Y. DOOR: a database for prokaryotic operons. Nucleic Acids Res. 37, D459–D463 (2009).
Marchler-Bauer, A. et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).
Inglis, D. O. et al. The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res. 40, D667–D674 (2012).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Acknowledgements
The authors thank K.C. Huang for advice on colony boundary detection algorithms. The authors also thank him, L.E. Dietrich and A. Price-Whelan for critically reading the manuscript and providing feedback. The authors thank L. Burrows (McMaster, Canada) for providing an antibody against PilC. This work was supported by the Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation to A.T.
Author information
Authors and Affiliations
Contributions
G.K., M.B., L.H.-D., A.K., M.W., M.Z. and A.T. conceived and designed the experiments. M.B., L.H.-D., A.K., M.W. and M.Z. performed the experiments. G.K. designed and implemented the software used in the analysis. G.K. analysed the data. G.K. and A.T. wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Discussion, Supplementary Figures 1–5, Supplementary References. (PDF 9960 kb)
Rights and permissions
About this article
Cite this article
Kritikos, G., Banzhaf, M., Herrera-Dominguez, L. et al. A tool named Iris for versatile high-throughput phenotyping in microorganisms. Nat Microbiol 2, 17014 (2017). https://doi.org/10.1038/nmicrobiol.2017.14
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/nmicrobiol.2017.14
This article is cited by
-
Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems
Nature (2022)
-
The functional proteome landscape of Escherichia coli
Nature (2020)
-
CRISPR interference-based gene repression in the plant growth promoter Paenibacillus sonchi genomovar Riograndensis SBR5
Applied Microbiology and Biotechnology (2020)
-
Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi
Nature Microbiology (2019)
-
An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation
Nature Communications (2019)