Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Architecture of the type IV coupling protein complex of Legionella pneumophila

Abstract

Many bacteria, including Legionella pneumophila, rely on the type IV secretion system to translocate a repertoire of effector proteins into the hosts for their survival and growth. Type IV coupling protein (T4CP) is a hexameric ATPase that links translocating substrates to the transenvelope secretion conduit. Yet, how a large number of effector proteins are selectively recruited and processed by T4CPs remains enigmatic. DotL, the T4CP of L. pneumophila, contains an ATPase domain and a C-terminal extension whose function is unknown. Unlike T4CPs involved in plasmid DNA translocation, DotL appeared to function by forming a multiprotein complex with four other proteins. Here, we show that the C-terminal extension of DotL interacts with DotN, IcmS, IcmW and an additionally identified subunit LvgA, and that this pentameric assembly binds Legionella effector proteins. We determined the crystal structure of this assembly and built an architecture of the T4CP holocomplex by combining a homology model of the ATPase domain of DotL. The holocomplex is a hexamer of a bipartite structure composed of a membrane-proximal ATPase domain and a membrane-distal substrate-recognition assembly. The presented information demonstrates the architecture and functional dissection of the multiprotein T4CP complexes and provides important insights into their substrate recruitment and processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of DotL(656–783)–IcmSW and DotL(590–659)–DotN.
Figure 2: Crystal structure of DotL(656–783)–IcmSW–LvgA.
Figure 3: Structural reconstitution of DotL(590–783)–DotN–IcmSW–LvgA.
Figure 4: Effector protein binding.
Figure 5: Model for the T4CP holocomplex.
Figure 6: C-terminal extension of T4CPs.

Similar content being viewed by others

References

  1. Wallden, K., Rivera-Calzada, A. & Waksman, G. Microreview: type IV secretion systems: versatility and diversity in function. Cell. Microbiol. 12, 1203–1212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vincent, C. D., Friedman, J. R., Jeong, K. C., Sutherland, M. C. & Vogel, J. P. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 85, 378–391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gomis-Ruth, F. X., Sola, M., de la Cruz, F. & Coll, M. Coupling factors in macromolecular type-IV secretion machineries. Curr. Pharm. Des. 10, 1551–1565 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Zechner, E. L., Lang, S. & Schildbach, J. F. Assembly and mechanisms of bacterial type IV secretion machines. Phil. Trans. R. Soc. Lond. B 367, 1073–1087 (2012).

    Article  CAS  Google Scholar 

  5. Vergunst, A. C. et al. Virb/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290, 979–982 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Schrammeijer, B., den Dulk-Ras, A., Vergunst, A. C., Jacome, E. J. & Hooykaas, P. J. J. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res. 31, 860–868 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Atmakuri, K., Cascales, E. & Christie, P. J. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol. Microbiol. 54, 1199–1211 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Jakubowski, S. J., Krishnamoorthy, V., Cascales, E. & Christie, P. J. Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J. Mol. Biol. 341, 961–977 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Isberg, R. R., O'Connor, T. J. & Heidtman, M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol. 7, 13–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Finsel, I. & Hilbi, H. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Cell. Microbiol. 17, 935–950 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Berger, K. H. & Isberg, R. R. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. Microbiol. 7, 7–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Marra, A., Blander, S. J., Horwitz, M. A. & Shuman, H. A. Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc. Natl Acad. Sci. USA 89, 9607–9611 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Segal, G., Purcell, M. & Shuman, H. A. Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl Acad. Sci. USA 95, 1669–1674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vogel, J. P., Andrews, H. L., Wong, S. K. & Isberg, R. R. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279, 873–876 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Juhas, M., Crook, D. W. & Hood, D. W. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell. Microbiol. 10, 2377–2386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christie, P. J. & Vogel, J. P. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8, 354–360 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vincent, C. D. et al. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 62, 1278–1291 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Buscher, B. A. et al. The DotL protein, a member of the TraG-coupling protein family, is essential for viability of Legionella pneumophila strain Lp02. J. Bacteriol. 187, 2927–2938 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gomis-Ruth, F. X., Moncalian, G., de la Cruz, F. & Coll, M. Conjugative plasmid protein TrwB, an integral membrane type IV secretion system coupling protein—detailed structural features and mapping of the active site cleft. J. Biol. Chem. 277, 7556–7566 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Sutherland, M. C., Nguyen, T. L., Tseng, V. & Vogel, J. P. The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Pathog. 8, e1002910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cambronne, E. D. & Roy, C. R. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3, e188 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alva, V., Nam, S. Z., Soding, J. & Lupas, A. N. The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res. 44, W410–W415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edelstein, P. H., Hu, B., Higa, F. & Edelstein, M. A. C. lvgA, a novel Legionella pneumophila virulence factor. Infect. Immun. 71, 2394–2403 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vincent, C. D. & Vogel, J. P. The Legionella pneumophila IcmS–LvgA protein complex is important for Dot/Icm-dependent intracellular growth. Mol. Microbiol. 61, 596–613 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Fiser, A., Do, R. K. & Sali, A. Modeling of loops in protein structures. Protein Sci. 9, 1753–1773 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 47, 5.6.1–5.6.37 (2014).

    Article  Google Scholar 

  28. Bardill, J. P., Miller, J. L. & Vogel, J. P. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol. Microbiol. 56, 90–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Coers, J. et al. Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol. Microbiol. 38, 719–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Habyarimana, F., Price, C. T., Santic, M., Al-Khodor, S. & Kwaik, Y. A. Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila. Infect. Immun. 78, 1123–1134 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Ninio, S., Zuckman-Cholon, D. M., Cambronne, E. D. & Roy, C. R. The Legionella IcmS–IcmW protein complex is important for Dot/Icm-mediated protein translocation. Mol. Microbiol. 55, 912–926 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Jain, A. et al. Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ninio, S., Celli, J. & Roy, C. R. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles. PLoS Pathog. 5, e1000278 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gomis-Rüth, F. X. et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637–641 (2001).

    Article  PubMed  Google Scholar 

  35. Lu, J. et al. Structural basis of specific TraD–TraM recognition during F plasmid-mediated bacterial conjugation. Mol. Microbiol. 70, 89–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Atmakuri, K., Ding, Z. Y. & Christie, P. J. Vire2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol. Microbiol. 49, 1699–1713 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whitaker, N. et al. Chimeric coupling proteins mediate transfer of heterologous type IV effectors through the Escherichia coli pKM101-encoded conjugation machine. J. Bacteriol. 198, 2701–2718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Whitaker, N. et al. The all-alpha domains of coupling proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-encoded type IV secretion systems confer specificity to binding of cognate DNA substrates. J. Bacteriol. 197, 2335–2349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Voth, D. E., Broederdorf, L. J. & Graham, J. G. Bacterial type IV secretion systems: versatile virulence machines. Future Microbiol. 7, 241–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Bennett, J. C. Q. & Hughes, C. From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol. 8, 202–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Parsot, C., Hamiaux, C. & Page, A. L. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6, 7–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Stebbins, C. E. & Galan, J. E. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 77–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Nagai, H. et al. A C-terminal translocation signal required for Dot/lcm-dependent delivery of the Legionella RalF protein to host cells. Proc. Natl Acad. Sci. USA 102, 826–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, L. et al. The E block motif is associated with Legionella pneumophila translocated substrates. Cell. Microbiol. 13, 227–245 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Lifshitz, Z. et al. Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc. Natl Acad. Sci. USA 110, E707–E715 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sexton, J. A., Yeo, H. J. & Vogel, J. P. Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol. Microbiol. 57, 70–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen, A. et al. Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat. Chem. Biol. 5, 469–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mccoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  52. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  54. Svergun, D. I., Petoukhov, M. V. & Koch, M. H. J. Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

  56. Semenyuk, A. V. & Svergun, D. I. GNOM—a program package for small-angle scattering data-processing. J. Appl. Crystallogr. 24, 537–540 (1991).

    Article  Google Scholar 

  57. Lee, N. K. et al. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88, 2939–2953 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, C., Lee, O. C., Kim, J. Y., Sung, W. & Lee, N. K. Dynamic release of bending stress in short dsDNA by formation of a kink and forks. Angew. Chem. Int. Ed. 54, 8943–8947 (2015).

    Article  CAS  Google Scholar 

  59. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jain, A., Liu, R., Xiang, Y. K. & Ha, T. Single-molecule pull-down for studying protein interactions. Nat. Protoc. 7, 445–452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Joo, K. et al. Template based protein structure modeling by global optimization in CASP11. Proteins 84(Suppl. 1), 221–232 (2016).

    Article  PubMed  Google Scholar 

  62. Joo, K., Lee, J., Kim, I., Lee, S. J. & Lee, J. Multiple sequence alignment by conformational space annealing. Biophys. J. 95, 4813–4819 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, J., Scheraga, H. A. & Rackovsky, S. New optimization method for conformational energy calculations on polypeptides: conformational space annealing. J. Comput. Chem. 18, 1222–1232 (1997).

    Article  CAS  Google Scholar 

  64. Lee, J., Lee, I. H. & Lee, J. Unbiased global optimization of Lennard–Jones clusters for N < or = 201 using the conformational space annealing method. Phys. Rev. Lett. 91, 080201 (2003).

    Article  PubMed  Google Scholar 

  65. Joo, K. et al. All-atom chain-building by optimizing MODELLER energy function using conformational space annealing. Proteins 75, 1010–1023 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Krivov, G. G., Shapovalov, M. V. & Dunbrack, R. L. Jr. Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77, 778–795 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study made use of Beamlines 4C and 5C at Pohang Accelerator Laboratory, Korea, and was supported by the National Research Foundation of Korea (NRF) (grant no. 2008-00576) and KAIST Future Systems Healthcare Project, Ministry of Science, ICT and Future Planning. J.D.K. was supported by a TJ PARK postdoctoral fellowship from POSCO TJ PARK Foundation. The authors thank the Korea Institute for Advanced Study for providing computing resources (KIAS Center for Advanced Computation Linux Cluster).

Author information

Authors and Affiliations

Authors

Contributions

M.-J.K., J.D.K., H.K., S.K. and Y.-G.K. performed X-ray crystallography and biochemical experiments. C.K. conducted the ALEX-FRET experiment, J.W.B. the SiMPull, K.J. and J.L. homology modelling, and K.S.J. the SAXS. B.-H.O., M.-J.K., J.D.K., N.K.L. and J.U.J. conceived the experiments and wrote the manuscript. All authors discussed the results.

Corresponding author

Correspondence to Byung-Ha Oh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Table 1, Supplementary References. (PDF 7746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, MJ., Kim, J., Kim, H. et al. Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol 2, 17114 (2017). https://doi.org/10.1038/nmicrobiol.2017.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.114

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology