Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses

Abstract

Human respiratory syncytial virus (hRSV) is a major cause of morbidity and mortality in the paediatric, elderly and immune-compromised populations1,2. A gap in our understanding of hRSV disease pathology is the interplay between virally encoded immune antagonists and host components that limit hRSV replication. hRSV encodes for non-structural (NS) proteins that are important immune antagonists36; however, the role of these proteins in viral pathogenesis is incompletely understood. Here, we report the crystal structure of hRSV NS1 protein, which suggests that NS1 is a structural paralogue of hRSV matrix (M) protein. Comparative analysis of the shared structural fold with M revealed regions unique to NS1. Studies on NS1 wild type or mutant alone or in recombinant RSVs demonstrate that structural regions unique to NS1 contribute to modulation of host responses, including inhibition of type I interferon responses, suppression of dendritic cell maturation and promotion of inflammatory responses. Transcriptional profiles of A549 cells infected with recombinant RSVs show significant differences in multiple host pathways, suggesting that NS1 may have a greater role in regulating host responses than previously appreciated. These results provide a framework to target NS1 for therapeutic development to limit hRSV-associated morbidity and mortality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of NS1 proteins from the genus Orthopneumovirus.
Figure 2: hRSV NS1 is a structural paralogue of hRSV matrix (M) protein.
Figure 3: hRSV NS1 mutations impact NS1 function.
Figure 4: NS1 unique regions are important for modulating host responses.

Similar content being viewed by others

References

  1. Hall, C. B. The burgeoning burden of respiratory syncytial virus among children. Infect. Disord. Drug Targets 12, 92–97 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Stockman, L. J., Curns, A. T., Anderson, L. J. & Fischer-Langley, G. Respiratory syncytial virus-associated hospitalizations among infants and young children in the United States, 1997–2006. Pediatr. Infect. Dis. J. 31, 5–9 (2012).

    Article  PubMed  Google Scholar 

  3. Bitko, V. et al. Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF-κB-dependent, interferon-independent mechanism and facilitate virus growth. J. Virol. 81, 1786–1795 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Lo, M. S., Brazas, R. M. & Holtzman, M. J. Respiratory syncytial virus nonstructural proteins NS1 and NS2 mediate inhibition of Stat2 expression and alpha/beta interferon responsiveness. J. Virol. 79, 9315–9319 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spann, K. M., Tran, K. C., Chi, B., Rabin, R. L. & Collins, P. L. Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages. J. Virol. 78, 4363–4369 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spann, K. M., Tran, K. C. & Collins, P. L. Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-κB, and proinflammatory cytokines. J. Virol. 79, 5353–5362 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Munoz, F. M. Respiratory syncytial virus in infants: is maternal vaccination a realistic strategy? Curr. Opin. Infect. Dis. 28, 221–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Collins, P. L. & Melero, J. A. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res. 162, 80–99 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simoes, E. A. et al. Challenges and opportunities in developing respiratory syncytial virus therapeutics. J. Infect. Dis. 211 (Suppl. 1), S1–S20 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bossert, B., Marozin, S. & Conzelmann, K. K. Nonstructural proteins NS1 and NS2 of bovine respiratory syncytial virus block activation of interferon regulatory factor 3. J. Virol. 77, 8661–8668 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren, J. et al. A novel mechanism for the inhibition of interferon regulatory factor-3-dependent gene expression by human respiratory syncytial virus NS1 protein. J. Gen. Virol. 92, 2153–2159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goswami, R. et al. Viral degradasome hijacks mitochondria to suppress innate immunity. Cell Res. 23, 1025–1042 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elliott, J. et al. Respiratory syncytial virus NS1 protein degrades STAT2 by using the elongin-cullin E3 ligase. J. Virol. 81, 3428–3436 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Straub, C. P. et al. Mutation of the elongin C binding domain of human respiratory syncytial virus non-structural protein 1 (NS1) results in degradation of NS1 and attenuation of the virus. Virol. J. 8, 252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Munir, S. et al. Respiratory syncytial virus interferon antagonist NS1 protein suppresses and skews the human T lymphocyte response. PLoS Pathog. 7, e1001336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Munir, S. et al. Nonstructural proteins 1 and 2 of respiratory syncytial virus suppress maturation of human dendritic cells. J. Virol. 82, 8780–8796 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Le Nouen, C. et al. Infection and maturation of monocyte-derived human dendritic cells by human respiratory syncytial virus, human metapneumovirus, and human parainfluenza virus type 3. Virology 385, 169–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Becker, Y. Respiratory syncytial virus(RSV)-induced allergy may be controlled by IL-4 and CX3C fractalkine antagonists and CpG ODN as adjuvant: hypothesis and implications for treatment. Virus Genes 33, 253–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Becker, Y. Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy—a review. Virus Genes 33, 235–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez, P. A. et al. Respiratory syncytial virus impairs T cell activation by preventing synapse assembly with dendritic cells. Proc. Natl Acad. Sci. USA 105, 14999–15004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hastie, M. L. et al. The human respiratory syncytial virus nonstructural protein 1 regulates type I and type II interferon pathways. Mol. Cell. Proteomics 11, 108–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, W. et al. The interactome of the human respiratory syncytial virus NS1 protein highlights multiple effects on host cell biology. J. Virol. 86, 7777–7789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Money, V. A., McPhee, H. K., Mosely, J. A., Sanderson, J. M. & Yeo, R. P. Surface features of a Mononegavirales matrix protein indicate sites of membrane interaction. Proc. Natl Acad. Sci. USA 106, 4441–4446 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dessen, A., Volchkov, V., Dolnik, O., Klenk, H. D. & Weissenhorn, W. Crystal structure of the matrix protein VP40 from Ebola virus. EMBO J. 19, 4228–4236 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Battisti, A. J. et al. Structure and assembly of a paramyxovirus matrix protein. Proc. Natl Acad. Sci. USA 109, 13996–14000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gaudier, M., Gaudin, Y. & Knossow, M. Crystal structure of vesicular stomatitis virus matrix protein. EMBO J. 21, 2886–2892 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neumann, P. et al. Crystal structure of the Borna disease virus matrix protein (BDV-M) reveals ssRNA binding properties. Proc. Natl Acad. Sci. USA 106, 3710–3715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Forster, A., Maertens, G. N., Farrell, P. J. & Bajorek, M. Dimerization of matrix protein is required for budding of respiratory syncytial virus. J. Virol. 89, 4624–4635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holtzman, M. J., Byers, D. E., Alexander-Brett, J. & Wang, X. The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat. Rev. Immunol. 14, 686–698 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Valarcher, J. F. et al. Role of alpha/beta interferons in the attenuation and immunogenicity of recombinant bovine respiratory syncytial viruses lacking NS proteins. J. Virol. 77, 8426–8439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dave, K. A. et al. A comprehensive proteomic view of responses of A549 type II alveolar epithelial cells to human respiratory syncytial virus infection. Mol. Cell. Proteomics 13, 3250–3269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martinez, I., Lombardia, L., Garcia-Barreno, B., Dominguez, O. & Melero, J. A. Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells. J. Gen. Virol. 88, 570–581 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Karron, R. A. et al. A gene deletion that up-regulates viral gene expression yields an attenuated RSV vaccine with improved antibody responses in children. Sci. Transl. Med. 7, 312ra175 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  36. Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479–485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Otwinowski, Z. in CCP4 Study Weekend (eds Wolf, W., Evans, P. R. & Leslie, A. G. W. ) 80–86 (Science and Engineering Research Council, 1991).

    Google Scholar 

  38. Cowtan, K. & Main, P. Miscellaneous algorithms for density modification. Acta Crystallogr. D 54, 487–493 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Perrakis, A., Harkiolaki, M., Wilson, K. S. & Lamzin, V. S. ARP/wARP and molecular replacement. Acta Crystallogr. D 57, 1445–1450 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D 62, 1002–1011 (2006).

    Article  PubMed  Google Scholar 

  42. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  43. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Murshudov, G. N., Vagin, A. A., Lebedev, A., Wilson, K. S. & Dodson, E. J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davis, I. W. et al. Molprobity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Collaborative Computational Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  48. DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, 2002).

    Google Scholar 

  49. Laskowski, R. A. Enhancing the functional annotation of PDB structures in PDBsum using key figures extracted from the literature. Bioinformatics 23, 1824–1827 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Laskowski, R. A. & Swindells, M. B. Ligplot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Bond, C. S. Topdraw: a sketchpad for protein structure topology cartoons. Bioinformatics 19, 311–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics 2, 2.3 (2002).

    Google Scholar 

  53. Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hotard, A. L. et al. A stabilized respiratory syncytial virus reverse genetics system amenable to recombination-mediated mutagenesis. Virology 434, 129–136 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, B. & Richards, F. M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  PubMed  Google Scholar 

  61. Vitalis, A. & Pappu, R. V. ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions. J. Comput. Chem. 30, 673–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank H. Virgin, M. Diamond, T. Ellenberger and J. Payton, M. Dinauer and E.E.L. Amarasinghe for discussions and J. Huh for technical support. Work in our laboratories is supported, in part, by NIH grants (R01AI107056 (to D.W.L.), R01AI123926 (to G.K.A.), R01AI114654 (to C.F.B.), U191099565 (G.K.A. is the PI of the subaward from a U19 grant for which Ting is the PI), U19AI109945 (to C.F.B.), U19AI109664 (to C.F.B.), U19AI070489 (to M.J.H.), R01AI111605 (to M.J.H.), R01 AI130591 (to M.J.H.), R01AI087798 (to M.L.M.), U19AI095227 (to M.L.M.) and T32-CA09547-37 (D.S.J. is the recipient of a training award from a T32 grant for which Allen is the PI)), the Department of Defense, Defense Threat Reduction Agency grants HDTRA1-16-0033 (to C.F.B.) and HDTRA1-16-0033 (to C.F.B.), the National Science Foundation MCB-1121867 (to R.V.P.) and the Children's Discovery Institute PD-II-2013-272 (to G.K.A.). S.C. is funded in part by an American Heart Association Postdoctoral Fellowship (15POST25140009). We thank members in the Amarasinghe, Leung, Basler, Artyomov and Holtzman laboratories and S. Ginell, N. Duke, R. Alkire, K. Lazarski, M. Ficner-Radford, Y. Kim and A. Joachimiak at Argonne National Laboratory SBC Sector 19. Use of Argonne National Laboratory Structural Biology Center beam lines at the Advanced Photon Source is supported by the US Department of Energy under contract DE-AC02-06CH11357. The content of the information does not necessarily reflect the position or the policy of the federal government and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Contributions

G.K.A. and D.W.L. conceived and designed the overall study, with input from the co-authors. S.C., P.L., E.E., E.A., B.C.Y., D.M.B., M.R.E., A.M., P.R., D.S.J., G.K.A. and D.W.L. performed research. M.L.M. provided the wild-type virus. All co-authors analysed the results. R.V.P., M.J.H., M.L.M., M.A., C.F.B., G.K.A. and D.W.L. designed and coordinated studies within each group. C.F.B., G.K.A. and D.W.L. wrote the manuscript with input from all co-authors. All authors analysed the results, and read and approved the manuscript for submission.

Corresponding authors

Correspondence to Gaya K. Amarasinghe or Daisy W. Leung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Tables 1 and 2. (PDF 22332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Luthra, P., Esaulova, E. et al. Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses. Nat Microbiol 2, 17101 (2017). https://doi.org/10.1038/nmicrobiol.2017.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing