Letter

Caulobacter crescentus intrinsic dimorphism provides a prompt bimodal response to copper stress

Received:
Accepted:
Published online:

Abstract

Stress response to fluctuating environments often implies a time-consuming reprogramming of gene expression. In bacteria, the so-called bet hedging strategy, which promotes phenotypic stochasticity within a cell population, is the only fast stress response described so far1. Here, we show that Caulobacter crescentus asymmetrical cell division allows an immediate bimodal response to a toxic metals-rich environment by allocating specific defence strategies to morphologically and functionally distinct siblings. In this context, a motile swarmer cell favours negative chemotaxis to flee from a copper source, whereas a sessile stalked sibling engages a ready-to-use PcoAB copper homeostasis system, providing evidence of a prompt stress response through intrinsic bacterial dimorphism.

  • Subscribe to Nature Microbiology for full access:

    $59

    Subscribe
  • Purchase article full text and PDF:

    $32

    Buy now

Additional access options:

Already a subscriber? Log in now or Register for online access.

References

  1. 1.

    , & Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).

  2. 2.

    Bodily Changes in Pain Hunger Fear and Rage (D. Appleton & Co., 1920).

  3. 3.

    & Copper homeostasis in bacteria. Adv. Appl. Microbiol. 65, 217–247 (2008).

  4. 4.

    , , & Intracellular copper accumulation enhances the growth of Kineococcus radiotolerans during chronic irradiation. Appl. Environ. Microbiol. 74, 1376–1384 (2008).

  5. 5.

    Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett. 587, 1902–1910 (2013).

  6. 6.

    , & Metal transporters and metal sensors: how coordination chemistry controls bacterial metal homeostasis. Chem. Rev. 109, 4644–4681 (2009).

  7. 7.

    & Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27, 197–213 (2003).

  8. 8.

    , , & Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J. Biol. Chem. 275, 31024–31029 (2000).

  9. 9.

    , , & The independent Cue and Cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 276, 30670–30677 (2001).

  10. 10.

    , & CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol. Microbiol. 39, 502–511 (2001).

  11. 11.

    et al. Transcriptomic and phylogenetic analysis of a bacterial cell cycle reveals strong associations between gene co-expression and evolution. BMC Genomics 14, 450 (2013).

  12. 12.

    & Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nature Rev. Microbiol. 2, 325–337 (2004).

  13. 13.

    et al. The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem. Biophys. Res. Commun. 295, 616–620 (2002).

  14. 14.

    , & Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle. Proc. Natl Acad. Sci. USA 98, 4095–4100 (2001).

  15. 15.

    , , , & Functions of the CckA histidine kinase in Caulobacter cell cycle control. Mol. Microbiol. 47, 1279–1290 (2003).

  16. 16.

    , & The Caulobacter crescentus outer membrane protein Omp58 (RsaF) is not required for paracrystalline S-layer secretion. FEMS Microbiol. Lett. 201, 277–283 (2001).

  17. 17.

    et al. Spectroscopy of Cu(ii)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli Pco copper resistance operon. Biochemistry (Moscow) 41, 10046–10055 (2002).

  18. 18.

    , , & The β-sliding clamp directs the localization of HdaA to the replisome in Caulobacter crescentus. Microbiol. Read. Engl. 159, 2237–2248 (2013).

  19. 19.

    et al. Flexibility revealed by the 1.85 A crystal structure of the beta sliding-clamp subunit of Escherichia coli DNA polymerase III. Acta Crystallogr. D 59, 1192–1199 (2003).

  20. 20.

    , & Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J. Biol. Chem. 280, 33785–33791 (2005).

  21. 21.

    & The iron–sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl Acad. Sci. USA 106, 8344–8349 (2009).

  22. 22.

    , & Fe–S clusters, fragile sentinels of the cell. Curr. Opin. Microbiol. 14, 218–223 (2011).

  23. 23.

    , , & Morphological and functional asymmetry in α-proteobacteria. Trends Microbiol. 12, 361–365 (2004).

  24. 24.

    et al. G1-arrested newborn cells are the predominant infectious form of the pathogen Brucella abortus. Nature Commun. 5, 4366 (2014).

  25. 25.

    Selection for nonbuoyant morphological mutants of Caulobacter crescentus. J. Bacteriol. 135, 1141–1145 (1978).

  26. 26.

    in Methods in Enzymology Vol. 204 (ed. Miller, J. H.) 372–384 (Academic, 1991).

  27. 27.

    & Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132, 294–301 (1977).

  28. 28.

    & Use of flow cytometry to identify a Caulobacter 4.5 S RNA temperature-sensitive mutant defective in the cell cycle. J. Mol. Biol. 251, 346–365 (1995).

  29. 29.

    & Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development. J. Bacteriol. 188, 5315–5318 (2006).

  30. 30.

    et al. Phosphate starvation triggers production and secretion of an extracellular lipoprotein in Caulobacter crescentus. PLoS ONE 5, e14198 (2010).

  31. 31.

    et al. The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect. Immun. 78, 2312–2319 (2010).

Download references

Author information

Affiliations

  1. Unité de Recherche en Biologie des Micro-organismes, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium

    • Emeline Lawarée
    • , Sébastien Gillet
    • , Gwennaëlle Louis
    • , Françoise Tilquin
    • , Sophie Le Blastier
    •  & Jean-Yves Matroule
  2. Unité de Recherche en Biologie Végétale, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium

    • Pierre Cambier

Authors

  1. Search for Emeline Lawarée in:

  2. Search for Sébastien Gillet in:

  3. Search for Gwennaëlle Louis in:

  4. Search for Françoise Tilquin in:

  5. Search for Sophie Le Blastier in:

  6. Search for Pierre Cambier in:

  7. Search for Jean-Yves Matroule in:

Contributions

E.L., S.G., G.L., F.T., S.L.B. and P.C. performed the experiments. E.L., S.G. and G.L. analysed the data. E.L. and J.-Y.M. initiated and designed the research. E.L., S.G. and J.-Y.M. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jean-Yves Matroule.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures 1-15, Supplementary Text, Supplementary Tables 1 and 2, Supplementary References