Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncovering oral Neisseria tropism and persistence using metagenomic sequencing

Abstract

Microbial epidemiology and population genomics have previously been carried out near-exclusively for organisms grown in vitro. Metagenomics helps to overcome this limitation, but it is still challenging to achieve strain-level characterization of microorganisms from culture-independent data with sufficient resolution for epidemiological modelling. Here, we have developed multiple complementary approaches that can be combined to profile and track individual microbial strains. To specifically profile highly recombinant neisseriae from oral metagenomes, we integrated four metagenomic analysis techniques: single nucleotide polymorphisms in the clade's core genome, DNA uptake sequence signatures, metagenomic multilocus sequence typing and strain-specific marker genes. We applied these tools to 520 oral metagenomes from the Human Microbiome Project, finding evidence of site tropism and temporal intra-subject strain retention. Although the opportunistic pathogen Neisseria meningitidis is enriched for colonization in the throat, N. flavescens and N. subflava populate the tongue dorsum, and N. sicca, N. mucosa and N. elongata the gingival plaque. The buccal mucosa appeared as an intermediate ecological niche between the plaque and the tongue. The resulting approaches to metagenomic strain profiling are generalizable and can be extended to other organisms and microbiomes across environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The phylogenetic structure of the family Neisseriaceae identifies well-defined subtrees of closely related species.
Figure 2: Biogeographical patterns of oral Neisseria strain colonization identified using metagenomic SNP calling.
Figure 3: Metagenomically inferred multilocus sequence types of oral neisseriae from the HMP data set segregate into three main body site clusters.
Figure 4: Characterization of N. sicca strain clusters using genetic polymorphisms and genomic variants from multiple subjects and body site metagenomes.
Figure 5: Persistent subject-specific, site-specific and strain-specific colonization by neisseriae identified using longitudinal metagenomic core genome SNP and genomic marker analyses.

Similar content being viewed by others

References

  1. Novak, N., Haberstok, J., Bieber, T. & Allam, J. P. The immune privilege of the oral mucosa. Trends Mol. Med. 14, 191–198 (2008).

    Article  Google Scholar 

  2. Feller, L. et al. Oral mucosal immunity. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116, 576–583 (2013).

    Article  Google Scholar 

  3. Allam, J. P. et al. Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells. J. Allerg. Clin. Immunol. 121, 368–374 (2008).

    Article  Google Scholar 

  4. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  Google Scholar 

  5. Tlaskalova-Hogenova, H. et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 8, 110–120 (2011).

    Article  Google Scholar 

  6. Nascimento, M. M., Gordan, V. V., Garvan, C. W., Browngardt, C. M. & Burne, R. A. Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol. Immunol. 24, 89–95 (2009).

    Article  Google Scholar 

  7. Burton, J. P., Chilcott, C. N., Moore, C. J., Speiser, G. & Tagg, J. R. A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J. Appl. Microbiol. 100, 754–764 (2006).

    Article  Google Scholar 

  8. Napimoga, M. H., Hofling, J. F., Klein, M. I., Kamiya, R. U. & Goncalves, R. B. Transmission, diversity and virulence factors of Streptococcus mutans genotypes. J. Oral Sci. 47, 59–64 (2005).

    Article  Google Scholar 

  9. De Chiara, M. et al. Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure. Proc. Natl Acad. Sci. USA 111, 5439–5444 (2014).

    Article  Google Scholar 

  10. Kadioglu, A., Weiser, J. N., Paton, J. C. & Andrew, P. W. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nature Rev. Microbiol. 6, 288–301 (2008).

    Article  Google Scholar 

  11. Napimoga, M. H. et al. Genotypic diversity and virulence traits of Streptococcus mutans in caries-free and caries-active individuals. J. Med. Microbiol. 53, 697–703 (2004).

    Article  Google Scholar 

  12. Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial ‘pan-genome’. Proc. Natl Acad. Sci. USA 102, 13950–13955 (2005).

    Article  Google Scholar 

  13. Hanage, W. P., Fraser, C. & Spratt, B. G. The impact of homologous recombination on the generation of diversity in bacteria. J. Theor. Biol. 239, 210–219 (2006).

    Article  Google Scholar 

  14. Segata, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13, R42 (2012).

    Article  Google Scholar 

  15. Snyder, L. A. & Saunders, N. J. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as ‘virulence genes’. BMC Genomics 7, 128 (2006).

    Article  Google Scholar 

  16. Knapp, J. S., Totten, P., Mulks, M. & Minshew, B. Characterization of Neisseria cinerea, a nonpathogenic species isolated on Martin–Lewis medium selective for pathogenic Neisseria spp. J. Clin. Microbiol. 19, 63–67 (1984).

    Google Scholar 

  17. Johnson, A. P. The pathogenic potential of commensal species of Neisseria. J. Clin. Pathol. 36, 213–223 (1983).

    Article  Google Scholar 

  18. Maiden, M. C. et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl Acad. Sci. USA 95, 3140–3145 (1998).

    Article  Google Scholar 

  19. Urwin, R. et al. Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect. Immun. 72, 5955–5962 (2004).

    Article  Google Scholar 

  20. Eren, A. M., Borisy, G. G., Huse, S. M. & Mark Welch, J. L. Oligotyping analysis of the human oral microbiome. Proc. Natl Acad. Sci. USA 111, E2875–E2884 (2014).

    Article  Google Scholar 

  21. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  Google Scholar 

  22. The Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).

    Article  Google Scholar 

  23. Muzzi, A., Mora, M., Pizza, M., Rappuoli, R. & Donati, C. Conservation of meningococcal antigens in the genus Neisseria. mBio 4, e00163–e00113 (2013).

    Article  Google Scholar 

  24. Knapp, J. S. & Hook, E. W. III. Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults. J. Clin. Microbiol. 26, 896–900 (1988).

    Google Scholar 

  25. Bennett, J. S. et al. A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 158, 1570–1580 (2012).

    Article  Google Scholar 

  26. Marri, P. R. et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS ONE 5, e11835 (2010).

    Article  Google Scholar 

  27. Segata, N., Bornigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nature Commun. 4, 2304 (2013).

    Article  Google Scholar 

  28. Tinsley, C. R. & Nassif, X. Analysis of the genetic differences between Neisseria meningitidis and Neisseria gonorrhoeae: two closely related bacteria expressing two different pathogenicities. Proc. Natl Acad. Sci. USA 93, 11109–11114 (1996).

    Article  Google Scholar 

  29. Bennett, J. S., Watkins, E. R., Jolley, K. A., Harrison, O. B. & Maiden, M. C. Identifying Neisseria species by use of the 50S ribosomal protein L6 (rplF) gene. J. Clin. Microbiol. 52, 1375–1381 (2014).

    Article  Google Scholar 

  30. Treangen, T. J., Ambur, O. H., Tonjum, T. & Rocha, E. The impact of the neisserial DNA uptake sequences on genome evolution and stability. Genome Biol. 9, R60 (2008).

    Article  Google Scholar 

  31. Frye, S. A., Nilsen, M., Tonjum, T. & Ambur, O. H. Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet. 9, e1003458 (2013).

    Article  Google Scholar 

  32. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nature Methods 12, 902–903 (2015).

    Article  Google Scholar 

  33. Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    Article  Google Scholar 

  34. Angly, F. E., Willner, D., Rohwer, F., Hugenholtz, P. & Tyson, G. W. Grinder: a versatile amplicon and shotgun sequence simulator. Nucleic Acids Res. 40, e94 (2012).

    Article  Google Scholar 

  35. Maiden, M. C. Multilocus sequence typing of bacteria. Ann. Rev. Microbiol. 60, 561–588 (2006).

    Article  Google Scholar 

  36. Jolley, K. A. & Maiden, M. C. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11, 595 (2010).

    Article  Google Scholar 

  37. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nature Methods 9, 811–814 (2012).

    Article  Google Scholar 

  38. Jones, G. R. et al. Dynamics of carriage of Neisseria meningitidis in a group of military recruits: subtype stability and specificity of the immune response following colonization. J. Infect. Dis. 178, 451–459 (1998).

    Article  Google Scholar 

  39. Glitza, I. C. et al. Longitudinal study of meningococcal carrier rates in teenagers. Int. J. Hygiene Environ. Health 211, 263–272 (2008).

    Article  Google Scholar 

  40. Jolley, K. A., Wilson, D. J., Kriz, P., McVean, G. & Maiden, M. C. The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol. Biol. Evol. 22, 562–569 (2005).

    Article  Google Scholar 

  41. Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50 (2013).

    Article  Google Scholar 

  42. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  Google Scholar 

  43. Namiki, T., Hachiya, T., Tanaka, H. & Sakakibara, Y. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 40, e155 (2012).

    Article  Google Scholar 

  44. Peng, Y., Leung, H. C., Yiu, S. M. & Chin, F. Y. Meta-IDBA: a de novo assembler for metagenomic data. Bioinformatics 27, i94–i101 (2011).

    Article  Google Scholar 

  45. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nature Methods 11, 1144–1146 (2014).

    Article  Google Scholar 

  46. Imelfort, M. et al. GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ 2, e603 (2014).

    Article  Google Scholar 

  47. Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).

    Article  Google Scholar 

  48. Loman, N. J. et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. Jama 309, 1502–1510 (2013).

    Article  Google Scholar 

  49. Hong, C. et al. PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples. Microbiome 2, 1–15 (2014).

    Article  Google Scholar 

  50. Francis, O. E. et al. Pathoscope: species identification and strain attribution with unassembled sequencing data. Genome Res. 23, 1721–1729 (2013).

    Article  Google Scholar 

  51. Scholz, M. et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nature Methods 13, 435–438 (2016).

    Article  Google Scholar 

  52. Greenblum, S., Carr, R. & Borenstein, E. Extensive strain-level copy-number variation across human gut microbiome species. Cell 160, 583–594 (2015).

    Article  Google Scholar 

  53. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nature Rev. Microbiol. 2, 123–140 (2004).

    Article  Google Scholar 

  54. Rasko, D. A. et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 190, 6881–6893 (2008).

    Article  Google Scholar 

  55. Parsonnet, J., Friedman, G. D., Orentreich, N. & Vogelman, H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40, 297–301 (1997).

    Article  Google Scholar 

  56. Hatakeyama, M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 15, 306–316 (2014).

    Article  Google Scholar 

  57. Nguyen, L. T., Uchida, T., Murakami, K., Fujioka, T. & Moriyama, M. Helicobacter pylori virulence and the diversity of gastric cancer in Asia. J. Med. Microbiol. 57, 1445–1453 (2008).

    Article  Google Scholar 

  58. Goldschneider, I., Gotschlich, E. C. & Artenstein, M. S. Human immunity to the meningococcus. II. Development of natural immunity. J. Exp. Med. 129, 1327–1348 (1969).

    Article  Google Scholar 

  59. Gold, R., Goldschneider, I., Lepow, M. L., Draper, T. F. & Randolph, M. Carriage of Neisseria meningitidis and Neisseria lactamica in infants and children. J. Infect. Dis. 137, 112–121 (1978).

    Article  Google Scholar 

  60. Maiden, M. C. & Frosch, M. Can we, should we, eradicate the meningococcus? Vaccine 30(Suppl 2), B52–56 (2012).

    Article  Google Scholar 

  61. Moir, J. W. Meningitis in adolescents: the role of commensal microbiota. Trends Microbiol. 23, 181–182 (2015).

    Article  Google Scholar 

  62. Leimkugel, J. et al. Clonal waves of Neisseria colonisation and disease in the African meningitis belt: eight-year longitudinal study in northern Ghana. PLoS Med. 4, e101 (2007).

    Article  Google Scholar 

  63. Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott, D. R. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130–D135 (2012).

    Article  Google Scholar 

  64. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  Google Scholar 

  65. Muzzi, A. & Donati, C. Population genetics and evolution of the pan-genome of Streptococcus pneumoniae. Int. J. Med. Microbiol. 301, 619–622 (2011).

    Article  Google Scholar 

  66. Hein, J., Schierup, M. & Wiuf, C. Gene Genealogies, Variation and Evolution: A Primer in Coalescent Theory (Oxford Univ. Press, 2004).

    Google Scholar 

  67. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359 (2012).

    Article  Google Scholar 

  68. Jolley, K. A., Chan, M. S. & Maiden, M. C. mlstdbNet—distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5, 86 (2004).

    Article  Google Scholar 

  69. Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA 111, E2329–2338 (2014).

    Article  Google Scholar 

  70. Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Human Microbiome Project Consortium and the generous participation of individuals from the Saint Louis (MO) and Houston (TX) areas who made the Human Microbiome Project possible. This work was supported in part by NIH grants R01HG005969 and U54DE023798, NSF grant DBI-1053486 and Army Research Office grant W911NF-11-1-0473 to C.H., and a European Union FP7 Marie-Curie grant (PCIG13-618833), MIUR grant FIR RBFR13EWWI, Fondazione Caritro grant Rif.Int.2013.0239, CIBIO Start-up funds and Terme di Comano grants to N.S.

Author information

Authors and Affiliations

Authors

Contributions

C.D. and N.S. conceived the study, implemented the software and performed the analyses. M.Z., D.A., D.T.T., F.A., V.I. and C.H. contributed to the analyses. D.C., O.J., C.D.F. and C.H. provided feedback and contributed to the writing. C.D., C.H. and N.S. wrote the manuscript.

Corresponding authors

Correspondence to Claudio Donati or Nicola Segata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–20, legends for Supplementary Tables 1–4, Supplementary Tables 5 and 6 and Supplementary References. (PDF 2969 kb)

Supplementary Table 1

List of the genomes from the Neisseriaceae families. considered in this work. (XLSX 18 kb)

Supplementary Table 2

DNA uptake sequences (DUS) from 241 genomes of Neisseriaceae family members. (XLSX 185 kb)

Supplementary Table 3

Clustering of the metagenomic samples and the genomic sequences of the reference strains obtained by performing a discriminant analysis of principal components. (XLSX 17 kb)

Supplementary Table 4

DNA uptake sequences (DUS) from the oral metagenomes. (XLSX 449 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donati, C., Zolfo, M., Albanese, D. et al. Uncovering oral Neisseria tropism and persistence using metagenomic sequencing. Nat Microbiol 1, 16070 (2016). https://doi.org/10.1038/nmicrobiol.2016.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.70

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology