Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Influenza virus mRNA trafficking through host nuclear speckles

A Corrigendum to this article was published on 09 January 2017

Abstract

Influenza A virus is a human pathogen with a genome composed of eight viral RNA segments that replicate in the nucleus. Two viral mRNAs are alternatively spliced. The unspliced M1 mRNA is translated into the matrix M1 protein, while the ion channel M2 protein is generated after alternative splicing. These proteins are critical mediators of viral trafficking and budding. We show that the influenza virus uses nuclear speckles to promote post-transcriptional splicing of its M1 mRNA. We assign previously unknown roles for the viral NS1 protein and cellular factors to an intranuclear trafficking pathway that targets the viral M1 mRNA to nuclear speckles, mediates splicing at these nuclear bodies and exports the spliced M2 mRNA from the nucleus. Given that nuclear speckles are storage sites for splicing factors, which leave these sites to splice cellular pre-mRNAs at transcribing genes, we reveal a functional subversion of nuclear speckles to promote viral gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influenza M mRNA is localized at nuclear speckles.
Figure 2: M1 mRNA and spliced M2 mRNA accumulate at nuclear speckles after transcription.
Figure 3: Viral NS1 protein promotes M1 mRNA splicing at nuclear speckles and nuclear export.
Figure 4: M mRNA splicing at nuclear speckles is mediated by host factors NS1-BP, hnRNP K and SON.
Figure 5: Aly/REF and UAP56 depletion inhibits M1 and M2 mRNA nuclear export and mediates speckle dependent M1 to M2 splicing enhancement.
Figure 6: Nuclear speckle assembly factor SON interacts with M1 mRNA and mediators of M1 mRNA splicing.

Similar content being viewed by others

References

  1. Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).

    Article  Google Scholar 

  2. Mao, Y. S., Zhang, B. & Spector, D. L. Biogenesis and function of nuclear bodies. Trends Genet. 27, 295–306 (2011).

    Article  Google Scholar 

  3. Saitoh, N. et al. Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell 15, 3876–3890 (2004).

    Article  Google Scholar 

  4. Misteli, T., Caceres, J. F. & Spector, D. L. The dynamics of a pre-mRNA splicing factor in living cells. Nature 387, 523–527 (1997).

    Article  Google Scholar 

  5. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

    Article  Google Scholar 

  6. Girard, C. et al. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nature Commun. 3, 994 (2012).

    Article  Google Scholar 

  7. Dias, A. P., Dufu, K., Lei, H. & Reed, R. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nature Commun. 1, 97 (2010).

    Article  Google Scholar 

  8. Akef, A., Zhang, H., Masuda, S. & Palazzo, A. F. Trafficking of mRNAs containing ALREX-promoting elements through nuclear speckles. Nucleus 4, 326–340 (2013).

    Article  Google Scholar 

  9. Ishihama, Y., Tadakuma, H., Tani, T. & Funatsu, T. The dynamics of pre-mRNAs and poly(A)+ RNA at speckles in living cells revealed by iFRAP studies. Exp. Cell Res. 314, 748–762 (2008).

    Article  Google Scholar 

  10. Melcak, I., Melcakova, S., Kopsky, V., Vecerova, J. & Raska, I. Prespliceosomal assembly on microinjected precursor mRNA takes place in nuclear speckles. Mol. Biol. Cell 12, 393–406 (2001).

    Article  Google Scholar 

  11. Dubois, J., Terrier, O. & Rosa-Calatrava, M. Influenza viruses and mRNA splicing: doing more with less. mBio 5, e00070 (2014).

    Article  Google Scholar 

  12. Jackson, D. & Lamb, R. A. The influenza A virus spliced messenger RNA M mRNA3 is not required for viral replication in tissue culture. J. Gen. Virol. 89, 3097–3101 (2008).

    Article  Google Scholar 

  13. Lamb, R. A., Lai, C. J. & Choppin, P. W. Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc. Natl Acad. Sci. USA 78, 4170–4174 (1981).

    Article  Google Scholar 

  14. Shih, S. R., Suen, P. C., Chen, Y. S. & Chang, S. C. A novel spliced transcript of influenza A/WSN/33 virus. Virus Genes 17, 179–183 (1998).

    Article  Google Scholar 

  15. Wise, H. M. et al. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathogens 8, e1002998 (2012).

    Article  Google Scholar 

  16. Matera, A. G. & Wang, Z. A day in the life of the spliceosome. Nature Rev. Mol. Cell Biol. 15, 108–121 (2014).

    Article  Google Scholar 

  17. Robb, N. C. & Fodor, E. The accumulation of influenza A virus segment 7 spliced mRNAs is regulated by the NS1 protein. J. Gen. Virol. 93, 113–118 (2012).

    Article  Google Scholar 

  18. Bier, K., York, A. & Fodor, E. Cellular cap-binding proteins associate with influenza virus mRNAs. J. Gen. Virol. 92, 1627–1634 (2011).

    Article  Google Scholar 

  19. Wang, W. et al. Imaging and characterizing influenza A virus mRNA transport in living cells. Nucleic Acids Res. 36, 4913–4928 (2008).

    Article  Google Scholar 

  20. Fortes, P., Lamond, A. I. & Ortin, J. Influenza virus NS1 protein alters the subnuclear localization of cellular splicing components. J. Gen. Virol. 76(Pt 4), 1001–1007 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, L. et al. Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export. J. Cell Biol. 196, 315–326 (2012).

    Article  Google Scholar 

  22. Wolff, T., O'Neill, R. E. & Palese, P. NS1-binding protein (NS1-BP): a novel human protein that interacts with the influenza A virus nonstructural NS1 protein is relocalized in the nucleus of infected cells. J. Virol. 72, 7170–7180 (1998).

    Google Scholar 

  23. Tsai, P. L. et al. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing. PLoS Pathogens 9, e1003460 (2013).

    Article  Google Scholar 

  24. Cao, W., Razanau, A., Feng, D., Lobo, V. G. & Xie, J. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation. Nucleic Acids Res. 40, 8059–8071 (2012).

    Article  Google Scholar 

  25. Marchand, V. et al. Identification of protein partners of the human immunodeficiency virus 1 tat/rev exon 3 leads to the discovery of a new HIV-1 splicing regulator, protein hnRNP K. RNA Biol. 8, 325–342 (2011).

    Article  Google Scholar 

  26. Motta-Mena, L. B. et al. A disease-associated polymorphism alters splicing of the human CD45 phosphatase gene by disrupting combinatorial repression by heterogeneous nuclear ribonucleoproteins (hnRNPs). J. Biol. Chem. 286, 20043–20053 (2011).

    Article  Google Scholar 

  27. Venables, J. P. et al. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol. Cell Biol. 28, 6033–6043 (2008).

    Article  Google Scholar 

  28. Sharma, A., Takata, H., Shibahara, K., Bubulya, A. & Bubulya, P. A. SON is essential for nuclear speckle organization and cell cycle progression. Mol. Biol. Cell 21, 650–663 (2010).

    Article  Google Scholar 

  29. Lu, X., Ng, H. H. & Bubulya, P. A. The role of SON in splicing, development, and disease. WIREs RNA 5, 637–646 (2014).

    Article  Google Scholar 

  30. Karlas, A. et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463, 818–822 (2010).

    Article  Google Scholar 

  31. Hautbergue, G. M., Hung, M. L., Golovanov, A. P., Lian, L. Y. & Wilson, S. A. Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc. Natl Acad. Sci. USA 105, 5154–5159 (2008).

    Article  Google Scholar 

  32. Gatfield, D. et al. The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr. Biol. 11, 1716–1721 (2001).

    Article  Google Scholar 

  33. Read, E. K. & Digard, P. Individual influenza A virus mRNAs show differential dependence on cellular NXF1/TAP for their nuclear export. J. Gen. Virol. 91, 1290–1301 (2010).

    Article  Google Scholar 

  34. Albert, B. J. et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol. Cancer Therapeut. 8, 2308–2318 (2009).

    Article  Google Scholar 

  35. Kaida, D. et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nature Chem. Biol. 3, 576–583 (2007).

    Article  Google Scholar 

  36. Schneider, J., Dauber, B., Melen, K., Julkunen, I. & Wolff, T. Analysis of influenza B Virus NS1 protein trafficking reveals a novel interaction with nuclear speckle domains. J. Virol. 83, 701–711 (2009).

    Article  Google Scholar 

  37. Valcarcel, J., Portela, A. & Ortin, J. Regulated M1 mRNA splicing in influenza virus-infected cells. J. Gen. Virol. 72(Pt 6), 1301–1308 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Ilyinskii, P. O., Gabai, V. L., Sunyaev, S. R., Thoidis, G. & Shneider, A. M. Toxicity of influenza A virus matrix protein 2 for mammalian cells is associated with its intrinsic proton-channeling activity. Cell Cycle 6, 2043–2047 (2007).

    Article  Google Scholar 

  39. Nayak, D. P., Balogun, R. A., Yamada, H., Zhou, Z. H. & Barman, S. Influenza virus morphogenesis and budding. Virus Res. 143, 147–161 (2009).

    Article  Google Scholar 

  40. Mor, A. et al. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nature Cell Biol. 12, 543–552 (2010).

    Article  Google Scholar 

  41. Cheng, H. et al. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127, 1389–1400 (2006).

    Article  Google Scholar 

  42. Luo, M. J. & Reed, R. Splicing is required for rapid and efficient mRNA export in metazoans. Proc. Natl Acad. Sci. USA 96, 14937–14942 (1999).

    Article  Google Scholar 

  43. Valencia, P., Dias, A. P. & Reed, R. Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc. Natl Acad. Sci. USA 105, 3386–3391 (2008).

    Article  Google Scholar 

  44. Nemeroff, M. E., Barabino, S. M., Li, Y., Keller, W. & Krug, R. M. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3’ end formation of cellular pre-mRNAs. Mol. Cell 1, 991–1000 (1998).

    Article  Google Scholar 

  45. Qiu, Y. & Krug, R. M. The influenza virus NS1 protein is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A). J. Virol. 68, 2425–2432 (1994).

    Google Scholar 

  46. Satterly, N. et al. Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc. Natl Acad. Sci. USA 104, 1853–1858 (2007).

    Article  Google Scholar 

  47. Zhang, L. et al. Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export. J. Cell Biol. 196, 315–326 (2012).

    Article  Google Scholar 

  48. Ayllon, J. & Garcia-Sastre, A. The NS1 protein: a multitasking virulence factor. Curr. Top. Microbiol. Immunol. 386, 73–107 (2015).

    Google Scholar 

  49. Kornblihtt, A. R. et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nature Rev. Mol. Cell Biol. 14, 153–165 (2013).

    Article  Google Scholar 

  50. Valcarcel, J., Fortes, P. & Ortin, J. Splicing of influenza virus matrix protein mRNA expressed from a simian virus 40 recombinant. J. Gen. Virol. 74(Pt 7), 1317–1326 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Institutes of Health (NIH) grants R01 GM113874-01, AI079110, R01 AI089539 and CPRIT RP121003–RP120718-P2 (to B.F.), NIH T32CA124334 (to A.M.), the Center for Research in Influenza Pathogenesis (CRIP) and the NIAID-funded Center of Excellence for Influenza Research and Surveillance (CEIRS, contract no. HHSN272201400008C to A.-G.S.), and NIH R21 AI119304 (to A.G.-S. and B.M.A.F.). The authors thank R. Cadagan and K. Phelps (Live Cell Imaging Core Facility) for assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.M., A.W., K.Z. and M.T. designed and conducted experiments. R.M.-M. conducted experiments and generated important reagents. M.E. conducted experiments. K.K. generated important reagent. K.W.L. designed experiments. A.M., A.G.-S. and B.M.A.F. designed experiments and wrote the paper.

Corresponding author

Correspondence to Beatriz M. A. Fontoura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–7, Supplementary Video legend, Supplementary Methods and Supplementary References. (PDF 2119 kb)

Supplementary Video 1

M mRNA is localized at nuclear speckles. (AVI 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mor, A., White, A., Zhang, K. et al. Influenza virus mRNA trafficking through host nuclear speckles. Nat Microbiol 1, 16069 (2016). https://doi.org/10.1038/nmicrobiol.2016.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing