Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes


The nucleus is highly compartmentalized yet dynamic. Subnuclear functions are regulated by controlling the subnuclear localization of the nuclear proteins. Influenza viral ribonucleoprotein (vRNP) is replicated in the nucleus and then exported to the cytoplasm. However, the precise subnuclear localization and transport of vRNPs remain unclear. Here, we show that CLUH, a host protein whose cellular function is not well established, plays a key role in the subnuclear transport of vRNP. Viral PB2 and M1 induced CLUH translocation to the nucleoplasm and SC35-positive speckles, respectively, even though CLUH is usually cytoplasmic. CLUH depletion inhibited the translocation of M1 to SC35-positive speckles, but did not interfere with PB2 localization to the nucleoplasm and disrupted the subnuclear transport of vRNP, abolishing vRNP nuclear export without affecting viral RNA or protein expression. Our findings suggest that CLUH plays a role in the subnuclear transport of progeny vRNP.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Role of CLUH in the influenza virus life cycle.
Figure 2: Intracellular localization of CLUH in infected cells.
Figure 3: Subnuclear localization of PB2, M1 and CLUH.
Figure 4: Accumulation of M1 and CLUH in SC35-positive speckles and recruitment of PB2.
Figure 5: Regulation of subnuclear transport of vRNP by CLUH and M1.
Figure 6: Overview of subnuclear transport of vRNP.


  1. 1

    Lamond, A. I. & Sleeman, J. E. Nuclear substructure and dynamics. Curr. Biol. 13, R825–R828 (2003).

    Article  Google Scholar 

  2. 2

    Mao, Y. S., Zhang, B. & Spector, D. L. Biogenesis and function of nuclear bodies. Trends Genet. 27, 295–306 (2011).

    Article  Google Scholar 

  3. 3

    Nickerson, J. A., Krockmalnic, G., Wan, K. M., Turner, C. D. & Penman, S. A normally masked nuclear matrix antigen that appears at mitosis on cytoskeleton filaments adjoining chromosomes, centrioles, and midbodies. J. Cell Biol. 116, 977–987 (1992).

    Article  Google Scholar 

  4. 4

    Pederson, T. Half a century of ‘the nuclear matrix’. Mol. Biol. Cell 11, 799–805 (2000).

    Article  Google Scholar 

  5. 5

    Chase, G. P. et al. Influenza virus ribonucleoprotein complexes gain preferential access to cellular export machinery through chromatin targeting. PLoS Pathogens 7, e1002187 (2011).

    Article  Google Scholar 

  6. 6

    Oh, Y. S. et al. SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell 152, 831–843 (2013).

    Article  Google Scholar 

  7. 7

    Engelke, R. et al. The quantitative nuclear matrix proteome as a biochemical snapshot of nuclear organization. J. Proteome Res. 13, 3940–3956 (2014).

    Article  Google Scholar 

  8. 8

    Saitoh, N. et al. Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell 15, 3876–3890 (2004).

    Article  Google Scholar 

  9. 9

    Razin, S. V., Borunova, V. V., Iarovaia, O. V. & Vassetzky, Y. S. Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus. Biochemistry 79, 608–618 (2014).

    Google Scholar 

  10. 10

    Eisfeld, A. J., Neumann, G. & Kawaoka, Y. At the centre: influenza A virus ribonucleoproteins. Nature Rev. Microbiol. 13, 28–41 (2015).

    Article  Google Scholar 

  11. 11

    Amorim, M. J. & Digard, P. Influenza A virus and the cell nucleus. Vaccine 24, 6651–6655 (2006).

    Article  Google Scholar 

  12. 12

    Josset, L., Frobert, E. & Rosa-Calatrava, M. Influenza A replication and host nuclear compartments: many changes and many questions. J. Clin. Virol. 43, 381–390 (2008).

    Article  Google Scholar 

  13. 13

    Hutchinson, E. C. & Fodor, E. Transport of the influenza virus genome from nucleus to nucleus. Viruses 5, 2424–2446 (2013).

    Article  Google Scholar 

  14. 14

    Watanabe, T., Watanabe, S. & Kawaoka, Y. Cellular networks involved in the influenza virus life cycle. Cell Host Microbe 7, 427–439 (2010).

    Article  Google Scholar 

  15. 15

    Martin, K. & Helenius, A. Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell 67, 117–130 (1991).

    Article  Google Scholar 

  16. 16

    Neumann, G., Hughes, M. T. & Kawaoka, Y. Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J. 19, 6751–6758 (2000).

    Article  Google Scholar 

  17. 17

    Elton, D. et al. Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J. Virol. 75, 408–419 (2001).

    Article  Google Scholar 

  18. 18

    Boulo, S., Akarsu, H., Ruigrok, R. W. & Baudin, F. Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Res. 124, 12–21 (2007).

    Article  Google Scholar 

  19. 19

    Paterson, D. & Fodor, E. Emerging roles for the influenza A virus nuclear export protein (NEP). PLoS Pathogens 8, e1003019 (2012).

    Article  Google Scholar 

  20. 20

    Eisfeld, A. J., Kawakami, E., Watanabe, T., Neumann, G. & Kawaoka, Y. RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J. Virol. 85, 6117–6126 (2011).

    Article  Google Scholar 

  21. 21

    Amorim, M. J. et al. A Rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral RNA. J. Virol. 85, 4143–4156 (2011).

    Article  Google Scholar 

  22. 22

    Lopez-Turiso, J. A., Martinez, C., Tanaka, T. & Ortin, J. The synthesis of influenza virus negative-strand RNA takes place in insoluble complexes present in the nuclear matrix fraction. Virus Res. 16, 325–337 (1990).

    Article  Google Scholar 

  23. 23

    Takizawa, N., Watanabe, K., Nouno, K., Kobayashi, N. & Nagata, K. Association of functional influenza viral proteins and RNAs with nuclear chromatin and sub-chromatin structure. Microbes Infect. 8, 823–833 (2006).

    Article  Google Scholar 

  24. 24

    Engelhardt, O. G., Smith, M. & Fodor, E. Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J. Virol. 79, 5812–5818 (2005).

    Article  Google Scholar 

  25. 25

    Ma, K., Roy, A. M. & Whittaker, G. R. Nuclear export of influenza virus ribonucleoproteins: identification of an export intermediate at the nuclear periphery. Virology 282, 215–220 (2001).

    Article  Google Scholar 

  26. 26

    Zhirnov, O. P. & Klenk, H. D. Histones as a target for influenza virus matrix protein M1. Virology 235, 302–310 (1997).

    Article  Google Scholar 

  27. 27

    Garcia-Robles, I., Akarsu, H., Muller, C. W., Ruigrok, R. W. & Baudin, F. Interaction of influenza virus proteins with nucleosomes. Virology 332, 329–336 (2005).

    Article  Google Scholar 

  28. 28

    Compans, R. W. & Dimmock, N. J. An electron microscopic study of single-cycle infection of chick embryo fibroblasts by influenza virus. Virology 39, 499–515 (1969).

    Article  Google Scholar 

  29. 29

    Anisimova, E., Ghendon, Y. & Markushin, S. Ultrastructural changes in cells induced by temperature-sensitive mutants of fowl plague virus at permissive and non-permissive temperature. J. Gen. Virol. 47, 11–18 (1980).

    Article  Google Scholar 

  30. 30

    Fortes, P., Lamond, A. I. & Ortin, J. Influenza virus NS1 protein alters the subnuclear localization of cellular splicing components. J. Gen. Virol. 76(Pt 4), 1001–1007 (1995).

    CAS  Article  Google Scholar 

  31. 31

    Brunotte, L. et al. The nuclear export protein of H5N1 influenza A viruses recruits Matrix 1 (M1) protein to the viral ribonucleoprotein to mediate nuclear export. J. Biol. Chem. 289, 20067–20077 (2014).

    Article  Google Scholar 

  32. 32

    Cox, R. T. & Spradling, A. C. Clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin. Dis. Model Mech. 2, 490–499 (2009).

    Article  Google Scholar 

  33. 33

    Gao, J. et al. CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins. J. Cell Biol. 207, 213–223 (2014).

    Article  Google Scholar 

  34. 34

    Sen, A., Damm, V. T. & Cox, R. T. Drosophila clueless is highly expressed in larval neuroblasts, affects mitochondrial localization and suppresses mitochondrial oxidative damage. PLoS ONE 8, e54283 (2013).

    Article  Google Scholar 

  35. 35

    Watanabe, T. et al. Influenza virus–host interactome screen as a platform for antiviral drug development. Cell Host Microbe 16, 795–805 (2014).

    Article  Google Scholar 

  36. 36

    Huang, S. et al. A second CRM1-dependent nuclear export signal in the influenza A virus NS2 protein contributes to the nuclear export of viral ribonucleoproteins. J. Virol. 87, 767–778 (2013).

    Article  Google Scholar 

  37. 37

    Iwatsuki-Horimoto, K., Horimoto, T., Fujii, Y. & Kawaoka, Y. Generation of influenza A virus NS2 (NEP) mutants with an altered nuclear export signal sequence. J. Virol. 78, 10149–10155 (2004).

    Article  Google Scholar 

  38. 38

    Kawakami, E. et al. Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J. Virol. Methods 173, 1–6 (2011).

    Article  Google Scholar 

  39. 39

    Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nature Rev. Mol. Cell Biol. 4, 605–612 (2003).

    Article  Google Scholar 

  40. 40

    Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).

    Article  Google Scholar 

  41. 41

    Hu, Q. et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc. Natl Acad. Sci. USA 105, 19199–19204 (2008).

    Article  Google Scholar 

  42. 42

    Brown, J. M. et al. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell Biol. 182, 1083–1097 (2008).

    Article  Google Scholar 

  43. 43

    Shopland, L. S., Johnson, C. V., Byron, M., McNeil, J. & Lawrence, J. B. Clustering of multiple specific genes and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods. J. Cell Biol. 162, 981–990 (2003).

    Article  Google Scholar 

  44. 44

    Kawaguchi, A., Matsumoto, K. & Nagata, K. YB-1 functions as a porter to lead influenza virus ribonucleoprotein complexes to microtubules. J. Virol. 86, 11086–11095 (2012).

    Article  Google Scholar 

  45. 45

    Momose, F. et al. Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J. Biol. Chem. 277, 45306–45314 (2002).

    Article  Google Scholar 

  46. 46

    Kawaguchi, A., Asaka, M. N., Matsumoto, K. & Nagata, K. Centrosome maturation requires YB-1 to regulate dynamic instability of microtubules for nucleus reassembly. Sci. Rep. 5, 8768 (2015).

    Article  Google Scholar 

  47. 47

    Naito, T., Momose, F., Kawaguchi, A. & Nagata, K. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J. Virol. 81, 1339–1349 (2007).

    Article  Google Scholar 

  48. 48

    Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  Google Scholar 

  49. 49

    Neumann, G. et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl Acad. Sci. USA 96, 9345–9350 (1999).

    Article  Google Scholar 

  50. 50

    Gorai, T. et al. F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding. Proc. Natl Acad. Sci. USA 109, 4615–4620 (2012).

    Article  Google Scholar 

  51. 51

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676–682 (2012).

    Article  Google Scholar 

  52. 52

    Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  Google Scholar 

Download references


The authors thank E. Takashita (National Institute of Infectious Diseases, Japan) for providing mouse anti-M1 (WS-27/52) and mouse anti-HA (WS3-54) antibodies, T. Kitamura (Institute of Medical Science, University of Tokyo) for providing Plat-GP cells and S. Watson for editing the manuscript. The authors thank T. Noda, E. Kawakami, T. Lopes, J. I-Hsuan Wang, Y. Sakai-Tagawa, K. Iwatsuki-Horimoto and our other co-workers for discussions and technical support. The authors also thank Y. Tomari (a grant-in-aid for Scientific Research on Innovative Areas, ‘Non-coding RNA neo-taxonomy’) for use of the super-resolution microscope and T. Watanabe (Carl Zeiss Microscopy) for help with microscope operation. This research was supported by the Japan Initiative for Global Research Network on Infectious Diseases from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and from the Japan Agency for Medical Research and Development (AMED); by grants-in-aid from the Ministry of Health, Labour and Welfare, Japan; by ERATO; by grants from the Strategic Basic Research Program of the Japan Science and Technology Agency; by the Advanced Research & Development Programs for Medical Innovation from AMED; and by JSPS, KAKENHI grant no. 15K19107. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of this manuscript.

Author information




T.A., S.Y. and Y.K. conceived and designed the experiments. T.A. performed the experiments. T.A., S.Y., S.W., T.W. and Y.K. analysed the data. T.A. and Y.T. contributed materials and analysis tools. T.A., S.Y. and Y.K. wrote the paper.

Corresponding authors

Correspondence to Seiya Yamayoshi or Yoshihiro Kawaoka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1-13. (PDF 2233 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ando, T., Yamayoshi, S., Tomita, Y. et al. The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes. Nat Microbiol 1, 16062 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing