Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Persister formation in Staphylococcus aureus is associated with ATP depletion

Abstract

Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics1. Persisters are associated with chronic infections and antibiotic treatment failure13. In Escherichia coli, toxin–antitoxin modules have been linked to persister formation46. The mechanism of persister formation in Gram-positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting toxin–antitoxin modules in S. aureus did not affect the level of persisters. Here, we show that S. aureus persisters are produced due to a stochastic entrance into the stationary phase accompanied by a drop in intracellular adenosine triphosphate. Cells expressing stationary-state markers are present throughout the growth phase, and increase in frequency with cell density. Cell sorting revealed that the expression of stationary markers is associated with a 100–1,000-fold increase in the likelihood of survival to antibiotic challenge. The adenosine triphosphate level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Toxin–antitoxin modules and stringent response do not control persister formation in S. aureus.
Figure 2: Activation of stationary markers is heterogeneous.
Figure 3: Persister sorting using stationary markers Pcap5A and ParcA.
Figure 4: Reduction in ATP induces persister formation and expression of stationary-phase markers.

Similar content being viewed by others

References

  1. Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).

    Article  CAS  Google Scholar 

  2. Conlon, B. P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365–370 (2013).

    Article  CAS  Google Scholar 

  3. Conlon, B. P. Staphylococcus aureus chronic and relapsing infections: evidence of a role for persister cells. BioEssays 36, 991–996 (2014).

    Article  Google Scholar 

  4. Maisonneuve, E., Shakespeare, L. J., Jorgensen, M. G. & Gerdes, K. Bacterial persistence by RNA endonucleases. Proc. Natl Acad. Sci. USA 108, 13206–13211 (2011).

    Article  CAS  Google Scholar 

  5. Dorr, T., Vulic, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317 (2010).

    Article  Google Scholar 

  6. Moyed, H. S. & Bertrand, K. P. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768–775 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hede, K. Antibiotic resistance: an infectious arms race. Nature 509, S2–S3 (2014).

    Article  Google Scholar 

  8. Monack, D. M., Mueller, A. & Falkow, S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nature Rev. Microbiol. 2, 747–765 (2004).

    Article  CAS  Google Scholar 

  9. Helaine, S. et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204–208 (2014).

    Article  CAS  Google Scholar 

  10. LaFleur, M. D., Qi, Q. & Lewis, K. Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob. Agents Chemother. 54, 39–44 (2010).

    Article  CAS  Google Scholar 

  11. Mulcahy, L. R., Burns, J. L., Lory, S. & Lewis, K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J. Bacteriol. 192, 6191–6199 (2010).

    Article  CAS  Google Scholar 

  12. Schumacher, M. A. et al. HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature 524, 59–64 (2015).

    Article  CAS  Google Scholar 

  13. Balaban, N. Q., Gerdes, K., Lewis, K. & McKinney, J. D. A problem of persistence: still more questions than answers? Nature Rev. Microbiol. 11, 587–591 (2013).

    Article  CAS  Google Scholar 

  14. Maisonneuve, E. & Gerdes, K. Molecular mechanisms underlying bacterial persisters. Cell 157, 539–548 (2014).

    Article  CAS  Google Scholar 

  15. Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18 (2004).

    Article  CAS  Google Scholar 

  16. Gerdes, K., Christensen, S. K. & Lobner-Olesen, A. Prokaryotic toxin–antitoxin stress response loci. Nature Rev. 3, 371–382 (2005).

    CAS  Google Scholar 

  17. Correia, F. F. et al. Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J. Bacteriol. 188, 8360–8367 (2006).

    Article  CAS  Google Scholar 

  18. Germain, E., Castro-Roa, D., Zenkin, N. & Gerdes, K. Molecular mechanism of bacterial persistence by HipA. Mol. Cell 52, 248–254 (2013).

    Article  CAS  Google Scholar 

  19. Kaspy, I. et al. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nature Commun. 4, 3001 (2013).

    Article  Google Scholar 

  20. LaFleur, M. D., Kumamoto, C. A. & Lewis, K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 50, 3839–3846 (2006).

    Article  CAS  Google Scholar 

  21. Shao, Y. et al. TADB: a web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Res. 39, D606–D611 (2011).

    Article  CAS  Google Scholar 

  22. Donegan, N. P., Thompson, E. T., Fu, Z. & Cheung, A. L. Proteolytic regulation of toxin–antitoxin systems by ClpPC in Staphylococcus aureus. J. Bacteriol. 192, 1416–1422 (2010).

    Article  CAS  Google Scholar 

  23. Maisonneuve, E., Castro-Camargo, M. & Gerdes, K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin–antitoxin activity. Cell 154, 1140–1150 (2013).

    Article  CAS  Google Scholar 

  24. Geiger, T. et al. Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect. Immun. 78, 1873–1883 (2010).

    Article  CAS  Google Scholar 

  25. Shan, Y., Lazinski, D., Rowe, S., Camilli, A. & Lewis, K. Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. MBio 6, e00078-15 (2015).

    Article  Google Scholar 

  26. Beenken, K. E. et al. Global gene expression in Staphylococcus aureus biofilms. J. Bacteriol. 186, 4665–4684 (2004).

    Article  CAS  Google Scholar 

  27. George, S. E. et al. Phenotypic heterogeneity and temporal expression of the capsular polysaccharide in Staphylococcus aureus. Mol. Microbiol. 98, 1073–1088 (2015).

    Article  CAS  Google Scholar 

  28. Davis, B. D., Chen, L. L. & Tai, P. C. Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc. Natl Acad. Sci. USA 83, 6164–6168 (1986).

    Article  CAS  Google Scholar 

  29. Malik, M., Zhao, X. & Drlica, K. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol. Microbiol. 61, 810–825 (2006).

    Article  CAS  Google Scholar 

  30. Cho, H., Uehara, T. & Bernhardt, T. G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300–1311 (2014).

    Article  CAS  Google Scholar 

  31. Kwan, B. W., Valenta, J. A., Benedik, M. J. & Wood, T. K. Arrested protein synthesis increases persister-like cell formation. Antimicrob. Agents Chemother. 57, 1468–1473 (2013).

    Article  CAS  Google Scholar 

  32. Steinbrecher, T. et al. Peptide–lipid interactions of the stress-response peptide TisB that induces bacterial persistence. Biophys. J. 103, 1460–1469 (2012).

    Article  CAS  Google Scholar 

  33. Wang, X. et al. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environ. Microbiol. 15, 1734–1744 (2013).

    Article  CAS  Google Scholar 

  34. Moore, S. A., Moennich, D. M. & Gresser, M. J. Synthesis and hydrolysis of ADP-arsenate by beef heart submitochondrial particles. J. Biol. Chem. 258, 6266–6271 (1983).

    CAS  PubMed  Google Scholar 

  35. Imamura, H. et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Natl Acad. Sci. USA 106, 15651–15656 (2009).

    Article  CAS  Google Scholar 

  36. Lechner, S., Lewis, K. & Bertram, R. Staphylococcus aureus persisters tolerant to bactericidal antibiotics. J. Mol. Microbiol. Biotechnol. 22, 235–244 (2012).

    Article  CAS  Google Scholar 

  37. Mechler, L. et al. A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrob. Agents Chemother. 59, 5366–5376 (2015).

    Article  CAS  Google Scholar 

  38. Geiger, T., Kastle, B., Gratani, F. L., Goerke, C. & Wolz, C. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J. Bacteriol. 196, 894–902 (2014).

    Article  Google Scholar 

  39. Cheung, A. L., Nast, C. C. & Bayer, A. S. Selective activation of sar promoters with the use of green fluorescent protein transcriptional fusions as the detection system in the rabbit endocarditis model. Infect. Immun. 66, 5988–5993 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Donegan, N. P. & Cheung, A. L. Regulation of the mazEF toxin–antitoxin module in Staphylococcus aureus and its impact on sigB expression. J. Bacteriol. 191, 2795–2805 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Wolz for the gift of the HG001, HG001 rshsyn and triple mutant rshsyn, relP, relQ strains. The authors thank R. Lee and M. LaFleur for critical discussions. This work was supported by National Institutes of Health grant no. R01AI110578 to K.L. and by a Charles A. King fellowship to B.C.

Author information

Authors and Affiliations

Authors

Contributions

B.P.C. and S.E.R. designed the study, performed experiments, analysed results and wrote the paper. A.B.G., A.S.N. and E.A.Z. performed experiments. N.P.G. created the triple TA mutant strain. G.C. and J.N.A. designed the study and analysed results. A.L.C. designed the study. K.L. designed the study, analysed results and wrote the paper.

Corresponding author

Correspondence to Kim Lewis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–9 (PDF 1993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conlon, B., Rowe, S., Gandt, A. et al. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1, 16051 (2016). https://doi.org/10.1038/nmicrobiol.2016.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.51

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology