Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype

Abstract

Microaspiration is a common phenomenon in healthy subjects, but its frequency is increased in chronic inflammatory airway diseases, and its role in inflammatory and immune phenotypes is unclear. We have previously demonstrated that acellular bronchoalveolar lavage samples from half of the healthy people examined are enriched with oral taxa (here called pneumotypeSPT) and this finding is associated with increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage. Here, we have characterized the inflammatory phenotype using a multi-omic approach. By evaluating both upper airway and acellular bronchoalveolar lavage samples from 49 subjects from three cohorts without known pulmonary disease, we observed that pneumotypeSPT was associated with a distinct metabolic profile, enhanced expression of inflammatory cytokines, a pro-inflammatory phenotype characterized by elevated Th-17 lymphocytes and, conversely, a blunted alveolar macrophage TLR4 response. The cellular immune responses observed in the lower airways of humans with pneumotypeSPT indicate a role for the aspiration-derived microbiota in regulating the basal inflammatory status at the pulmonary mucosal surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major differences in microbial composition of the lower airways are driven by enrichment with either supraglottic taxa or background taxa.
Figure 2: Comparison of inferred metagenomes of pneumotypeSPT and pneumotypeBPT.
Figure 3: Correlation between the lower airway microbiome and metabolome.
Figure 4: Similarity of the lower airway microbiome with the upper airway microbiome is associated with the percentage of lymphocytes in BAL.
Figure 5: PneumotypeSPT is associated with a blunted TLR4 response of alveolar macrophages.

Similar content being viewed by others

References

  1. Charlson, E. S. et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 184, 957–963 (2011).

    Article  Google Scholar 

  2. Erb-Downward, J. R. et al. Analysis of the lung microbiome in the ‘healthy’ smoker and in COPD. PLoS ONE 6, e16384 (2011).

    Article  CAS  Google Scholar 

  3. Segal, L. N. et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1, 19 (2013).

    Article  Google Scholar 

  4. Morris, A. et al. Comparison of the respiratory microbiome in healthy non-smokers and smokers. Am. J. Respir. Crit. Care Med. 187, 1067–1075 (2013).

    Article  Google Scholar 

  5. Gleeson, K., Eggli, D. F. & Maxwell, S. L. Quantitative aspiration during sleep in normal subjects. Chest 111, 1266–1272 (1997).

    Article  CAS  Google Scholar 

  6. Cvejic, L. et al. Laryngeal penetration and aspiration in individuals with stable COPD. Respirology 16, 269–275 (2011).

    Article  Google Scholar 

  7. Rascon-Aguilar, I. E. et al. Role of gastroesophageal reflux symptoms in exacerbations of COPD. Chest 130, 1096–1101 (2006).

    Article  Google Scholar 

  8. Koskella, B. & Meaden, S. Understanding bacteriophage specificity in natural microbial communities. Viruses 5, 806–823 (2013).

    Article  Google Scholar 

  9. Huang, Y. J. et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J. Clin. Microbiol. 52, 2813–2823 (2014).

    Article  Google Scholar 

  10. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    Article  CAS  Google Scholar 

  11. Lee, J. H. et al. Signal transducer and activator of transcription-3 (Stat3) plays a critical role in implantation via progesterone receptor in uterus. FASEB J. 27, 2553–2563 (2013).

    Article  CAS  Google Scholar 

  12. Kim, H. & Baumann, H. The carboxyl-terminal region of STAT3 controls gene induction by the mouse haptoglobin promoter. J. Biol. Chem. 272, 14571–14579 (1997).

    Article  CAS  Google Scholar 

  13. Zauberman, A., Lapter, S. & Zipori, D. Smad proteins suppress CCAAT/enhancer-binding protein (C/EBP) β- and STAT3-mediated transcriptional activation of the haptoglobin promoter. J. Biol. Chem. 276, 24719–24725 (2001).

    Article  CAS  Google Scholar 

  14. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    Article  CAS  Google Scholar 

  15. Yang, P., Li, Z., Fu, R., Wu, H. & Li, Z. Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell. Signal. 26, 1853–1862 (2014).

    Article  CAS  Google Scholar 

  16. Pathak, R. R. et al. Loss of phosphatase and tensin homolog (PTEN) induces leptin-mediated leptin gene expression: feed-forward loop operating in the lung. J. Biol. Chem. 288, 29821–29835 (2013).

    Article  CAS  Google Scholar 

  17. Huxley, E. J., Viroslav, J., Gray, W. R. & Pierce, A. K. Pharyngeal aspiration in normal adults and patients with depressed consciousness. Am. J. Med. 64, 564–568 (1978).

    Article  CAS  Google Scholar 

  18. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  Google Scholar 

  19. Knights, D. et al. Rethinking ‘enterotypes’. Cell Host Microbe 16, 433–437 (2014).

    Article  CAS  Google Scholar 

  20. Lozupone, C. et al. Widespread colonization of the lung by Tropheryma whipplei in HIV infection. Am. J. Respir. Crit. Care Med. 187, 1110–1117 (2013).

    Article  Google Scholar 

  21. Pragman, A. A., Kim, H. B., Reilly, C. S., Wendt, C. & Isaacson, R. E. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE 7, e47305 (2012).

    Article  CAS  Google Scholar 

  22. Sze, M. A. et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 185, 1073–1080 (2012).

    Article  Google Scholar 

  23. Tunney, M. M. et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am. J. Respir. Crit. Care Med. 187, 1118–1126 (2013).

    Article  Google Scholar 

  24. Morse, C. A. et al. Is there a relationship between obstructive sleep apnea and gastroesophageal reflux disease? Clin. Gastroenterol. Hepatol. 2, 761–768 (2004).

    Article  Google Scholar 

  25. Teramoto, S. et al. Obstructive sleep apnea syndrome may be a significant cause of gastroesophageal reflux disease in older people. J. Am. Geriatr. Soc. 47, 1273–1274 (1999).

    Article  CAS  Google Scholar 

  26. Field, S. K., Underwood, M., Brant, R. & Cowie, R. L. Prevalence of gastroesophageal reflux symptoms in asthma. Chest 109, 316–322 (1996).

    Article  CAS  Google Scholar 

  27. Scott, R. B., O'Loughlin, E. V. & Gall, D. G. Gastroesophageal reflux in patients with cystic fibrosis. J. Pediatr. 106, 223–227 (1985).

    Article  CAS  Google Scholar 

  28. Koh, W. J. et al. Prevalence of gastroesophageal reflux disease in patients with nontuberculous mycobacterial lung disease. Chest 131, 1825–1830 (2007).

    Article  Google Scholar 

  29. Leopold, P. L. et al. Smoking is associated with shortened airway cilia. PLoS ONE 4, e8157 (2009).

    Article  Google Scholar 

  30. Foster, W. M., Costa, D. L. & Langenback, E. G. Ozone exposure alters tracheobronchial mucociliary function in humans. J. Appl. Phys 63, 996–1002 (1987).

    CAS  Google Scholar 

  31. Wang, L. et al. Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J. Lipid Res. 50, 204–213 (2009).

    Article  CAS  Google Scholar 

  32. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  Google Scholar 

  33. Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    Article  CAS  Google Scholar 

  34. Dickson, R. P. et al. Cell-associated bacteria in the human lung microbiome. Microbiome 2, 28 (2014).

    Article  Google Scholar 

  35. Twigg, H. L. et al. Comparison of whole and acellular bronchoalveolar lavage to oral wash microbiomes. Should acellular bronchoalveolar lavage be the standard? Ann. Am. Thorac. Soc. 11, S72–S73 (2014).

    Article  Google Scholar 

  36. Dickson, R. P. et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc. 12, 821–830 (2015).

    Article  Google Scholar 

  37. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382–392 (2014).

    Article  CAS  Google Scholar 

  38. Cui, L. et al. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am. J. Respir. Crit. Care Med. 191, 932–942 (2015).

    Article  Google Scholar 

  39. Willner, D. et al. Case studies of the spatial heterogeneity of DNA viruses in the cystic fibrosis lung. Am. J. Respir. Cell Mol. Biol. 46, 127–131 (2012).

    Article  CAS  Google Scholar 

  40. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    Article  CAS  Google Scholar 

  41. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336 (2010).

    Article  CAS  Google Scholar 

  42. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  Google Scholar 

  43. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  Google Scholar 

  44. Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).

    Article  CAS  Google Scholar 

  45. Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).

    Article  Google Scholar 

  46. Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nature Methods 8, 761–763 (2011).

    Article  CAS  Google Scholar 

  47. Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol. 31, 814–821 (2013).

    Article  CAS  Google Scholar 

  48. Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).

    Article  CAS  Google Scholar 

  49. Zhao, G. et al. Identification of novel viruses using VirusHunter—an automated data analysis pipeline. PLoS ONE 8, e78470 (2013).

    Article  CAS  Google Scholar 

  50. Wikoff, W. R. et al. Pharmacometabolomics reveals racial differences in response to atenolol treatment. PLoS ONE 8, e57639 (2013).

    Article  CAS  Google Scholar 

  51. Fiehn, O. et al. Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J. 53, 691–704 (2008).

    Article  CAS  Google Scholar 

  52. Xia, J., Sinelnikov, I. V., Han, B. & Wishart, D. S. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 43(W1), W251–W257 (2015).

    Article  Google Scholar 

  53. Semple, P. L. et al. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am. J. Respir. Crit. Care Med. 187, 1249–1258 (2013).

    Article  CAS  Google Scholar 

  54. Calvano, S. E. et al. A network-based analysis of systemic inflammation in humans. Nature 437, 1032–1037 (2005).

    Article  CAS  Google Scholar 

  55. Reiner, A., Yekutieli, D. & Benjamini, Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368–375 (2003).

    Article  CAS  Google Scholar 

  56. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Article  Google Scholar 

  57. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  Google Scholar 

  58. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research support funding was provided by the National Institute of Allergy and Infectious Diseases (NIAID) K23 AI102970 (to L.N.S.); the National Heart, Lung and Blood Institute (NHLBI) R01 HL125816 (to S.B.K.); NIAID K24 AI080298 (to M.D.W.); the Clinical and Translational Science Institute (CTSI) grant no. UL1 TR000038; the Early Detection Research Network (EDRN) 5U01CA086137-13; the Diane Belfer Program for Human Microbial Ecology; the Michael Saperstein Scholarship Fund; the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) R01DK090989; the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) UH2 AR57506; NIAID U01AI111598; NHLBI R01 HL090339; NHLBI K24 HL123342 (to A.M.); NHLBI U01 HL098962 (to A.M. and E.G.); NHLBI K24HL123342; NHLBI K24 HL087713 (to L.H.); NIAID and the National Cancer Institute (NCI) UO1-AI-35042; 5-MO1-RR-00722 from the General Clinical Research Center (GCRC); UL1TR000124 from the University of California Los Angeles Clinical and Translational Research Center (UCLA CTRC); NIAID UO1-AI-35043; NIAID UO1-AI-37984; NIAID UO1-AI-35039; NIAID UO1-AI-35040; NIAID UO1-AI-37613; NIAID UO1-AI-35041 (Multicenter AIDS Cohort); NIAID and the National Institute of Child Health and Human Development (NICHHD) UO1-AI-35004; NIAID UO1-AI-31834; NIAID UO1-AI-34994; NIAID UO1-AI-34989; NIAID UO1-AI-34993; NIAID UO1-AI-42590; NICHHD UO1-HD-32632; the Women's Interagency HIV Study (WIHS); NHLBI U01-HL098957 and NHLBI R01-HL113252 (to R.G.C.).

The authors also thank H.W. Virgin (Washington University School of Medicine), S. Stone, S. Fong, A. Malki and S. Tokman (University of California San Francisco (UCSF)), C. Kessinger, N. Leo, D. Camp, M.P. George, L. Lucht, M. Gingo, R. Hoffman, M. Fitzpatrick, J. Ries, A. Clarke (Pittsburgh) and J. Dermand and E. Kleerup (UCLA).

Computing was partially supported by the Department of Scientific Computing at the Icahn School of Medicine at Mount Sinai.

Some of the Pittsburgh LHMP data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) with centres (Principal Investigators) at UCLA (R. Detels, U01-AI35040); University of Pittsburgh (C. Rinaldo, U01-AI35041); the Center for Analysis and Management of MACS, Johns Hopkins University Bloomberg School of Public Health (L. Jacobson, UM1-AI35043). MACS is funded primarily by NIAID, with additional cofunding from the NCI. Targeted supplemental funding for specific projects was also provided by the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD). MACS data collection was also supported by UL1-TR000424 Johns Hopkins University Clinical and Translational Science Awards (JHU CTSA, https://statepi.jhsph.edu/macs/macs.html). The contents of this publication are solely the responsibility of the authors and do not represent the official views of the National Institutes of Health (NIH).

Some of the Pittsburgh LHMP data in this manuscript were collected by the WIHS. WIHS (principal investigators): U01-AI-103408; Connie Wofsy Women's HIV Study, Northern California (R. Greenblatt, B. Aouizerat and P. Tien). The WIHS is funded primarily by NIAID, with additional cofunding from the Eunice Kennedy Shriver NICHD, the NCI, the National Institute on Drug Abuse (NIDA) and the National Institute on Mental Health (NIMH). WIHS data collection was also supported by UL1-TR000004 (UCSF CTSA).

Author information

Authors and Affiliations

Authors

Contributions

L.N.S., J.C.C., M.J.B. and M.D.W. conceived and designed the study. L.N.S., J.J.T., A.M., L.H., P.D. and W.R.W. acquired the data. L.N.S., J.C.C, J.J.T., S.B.K., B.G.W., Y.L., N.S., W.R.W., C.U., A.A., B.C.K., R.G.C., M.J.B. and M.D.W. analysed and interpreted the data. L.N.S., J.C.C., J.J.T., S.B.K., E.G., A.M., P.D., L.H., W.R.W., B.C.K., W.N.R., D.H.S., R.G.C., M.J.B. and M.D.W. drafted or revised the article. L.N.S., J.C.C., J.J.T., S.B.K., B.G.W., Y.L., N.S., E.G., A.M., P.D., L.H., W.R.W., C.U., A.A., B.C.K., W.N.R., D.H.S., R.G.C., M.J.B. and M.D.W. approved the final manuscript.

Corresponding authors

Correspondence to Leopoldo N. Segal or Michael D. Weiden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Methods, Results, References, Figures 1-10 and Tables 1-7. (PDF 9099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segal, L., Clemente, J., Tsay, JC. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 1, 16031 (2016). https://doi.org/10.1038/nmicrobiol.2016.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.31

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research