Abstract
RNA-dependent RNA polymerases (RdRps) are used by RNA viruses to replicate and transcribe their RNA genomes1. They adopt a closed, right-handed fold with conserved subdomains called palm, fingers and thumb1,2. Conserved RdRp motifs A–F coordinate the viral RNA template, NTPs and magnesium ions to facilitate nucleotide condensation1. For the initiation of RNA synthesis, most RdRps use either a primer-dependent or de novo mechanism3. The influenza A virus RdRp, in contrast, uses a capped RNA oligonucleotide to initiate transcription, and a combination of terminal and internal de novo initiation for replication4. To understand how the influenza A virus RdRp coordinates these processes, we analysed the function of a thumb subdomain β-hairpin using initiation, elongation and single-molecule Förster resonance energy transfer (sm-FRET) assays. Our data indicate that this β-hairpin is essential for terminal initiation during replication, but not necessary for internal initiation and transcription. Analysis of individual residues in the tip of the β-hairpin shows that PB1 proline 651 is critical for efficient RNA synthesis in vitro and in cell culture. Overall, this work advances our understanding of influenza A virus RNA synthesis and identifies the initiation platform of viral replication.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.




References
te Velthuis, A. J. Common and unique features of viral RNA-dependent polymerases. Cell. Mol. Life Sci. 71, 4403–4420 (2014).
Ng, K. K., Arnold, J. J. & Cameron, C. E. Structure-function relationships among RNA-dependent RNA polymerases. Curr. Top. Microbiol. Immunol. 320, 137–156 (2008).
Kao, C. C., Singh, P. & Ecker, D. J. De novo initiation of viral RNA-dependent RNA synthesis. Virology 287, 251–260 (2001).
Fodor, E. The RNA polymerase of influenza a virus: mechanisms of viral transcription and replication. Acta Virol. 57, 113–122 (2013).
Tao, Y., Farsetta, D. L., Nibert, M. L. & Harrison, S. C. RNA synthesis in a cage—structural studies of reovirus polymerase λ3. Cell 111, 733–745 (2002).
Butcher, S. J., Grimes, J. M., Makeyev, E. V., Bamford, D. H. & Stuart, D. I. A mechanism for initiating RNA-dependent RNA polymerization. Nature 410, 235–240 (2001).
Yap, T. L., Xu, T., Chen, Y.-L., Malet, H. et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J. Virol. 81, 4753–4765 (2007).
Thompson, A. A. & Peersen, O. B. Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J. 23, 3462–3471 (2004).
Appleby, T. C. et al. Structural basis for RNA replication by the hepatitis C virus polymerase. Science 347, 771–775 (2015).
Laurila, M. R. L., Makeyev, E. V. & Bamford, D. H. Bacteriophage φ6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer. J. Biol. Chem. 277, 17117–17124 (2002).
Hong, Z. et al. A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase. Virology 285, 6–11 (2001).
Mosley, R. T. et al. Structure of hepatitis C virus polymerase in complex with primer-template RNA. J. Virol. 86, 6503–6511 (2012).
Morin, B., Kranzusch, P. J., Rahmeh, A. A. & Whelan, S. P. J. The polymerase of negative-stranded RNA viruses. Curr. Opin. Virol. 3, 103–110 (2013).
Pflug, A., Guilligay, D., Reich, S. & Cusack, S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516, 355–360 (2014).
Deng, T., Vreede, F. T. & Brownlee, G. G. Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J. Virol. 80, 2337–2348 (2006).
Reich, S. et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516, 361–366 (2014).
Hengrung, N. et al. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature 527, 114–117 (2015).
Vreede, F. T., Jung, T. E. & Brownlee, G. G. Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J. Virol. 78, 9568–9572 (2004).
Tomescu, A. I., Robb, N. C., Hengrung, N., Fodor, E. & Kapanidis, A. N. Single-molecule FRET reveals a corkscrew RNA structure for the polymerase-bound influenza virus promoter. Proc. Natl Acad. Sci. USA 111, E3335–E3342 (2014).
Luscombe, N. M., Laskowski, R. A. & Thornton, J. M. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. 29, 2860–2874 (2001).
Rice, P. A., Yang, S., Mizuuchi, K. & Nash, H. A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–1306 (1996).
Fodor, E. et al. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 76, 8989–9001 (2002).
Deng, T., Sharps, J., Fodor, E. & Brownlee, G. G. In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. J. Virol. 79, 8669–8674 (2005).
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).
Santoso, Y. et al. Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proc. Natl Acad. Sci. USA 107, 715–720 (2010).
O'Toole, A. S., Miller, S., Haines, N., Zink, M. C. & Serra, M. J. Comprehensive thermodynamic analysis of 3 double-nucleotide overhangs neighboring Watson--Crick terminal base pairs. Nucleic Acids Res. 34, 3338–3344 (2006).
Sugimoto, N., Kierzek, R. & Turner, D. H. Sequence dependence for the energetics of dangling ends and terminal base pairs in ribonucleic acid. Biochemistry 26, 4554–4558 (1987).
Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).
Thierry, E. et al. Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol. Cell 61, 1–13 (2016).
Brownlee, G. G., Fodor, E., Pritlove, D. C., Gould, K. G. & Dalluge, J. J. Solid phase synthesis of 5′-diphosphorylated oligoribonucleotides and their conversion to capped m7Gppp-oligoribonucleotides for use as primers for influenza A virus RNA polymerase in vitro. Nucleic Acids Res. 23, 2641–2647 (1995).
Acknowledgements
This work was supported by a Wellcome Trust grant 098721/Z/12/Z (to A.J.W.t.V.), a Netherlands Organization for Scientific Research (NWO) grant 825.11.029 (to A.J.W.t.V.), a Medical Research Council (MRC) grant MR/K000241/1 (to E.F.), a European Commission Seventh Framework Program grant FP7/2007-2013 HEALTH-F4-2008-201418 (to A.N.K.), a Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/J001694/1 (to A.N.K. and E.F.), and a Kemp postdoctoral fellowship from Lincoln College Oxford (to A.J.W.t.V.).
Author information
Authors and Affiliations
Contributions
A.J.W.t.V. and N.C.R. designed experiments. A.J.W.t.V. performed experiments. A.J.W.t.V., N.C.R., A.N.K. and E.F. analysed data. A.J.W.t.V. and E.F. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Figures 1-18, Tables 1-3 and References (PDF 20544 kb)
Rights and permissions
About this article
Cite this article
te Velthuis, A., Robb, N., Kapanidis, A. et al. The role of the priming loop in influenza A virus RNA synthesis. Nat Microbiol 1, 16029 (2016). https://doi.org/10.1038/nmicrobiol.2016.29
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/nmicrobiol.2016.29
Further reading
-
Structural snapshots of La Crosse virus polymerase reveal the mechanisms underlying Peribunyaviridae replication and transcription
Nature Communications (2022)
-
Mapping inhibitory sites on the RNA polymerase of the 1918 pandemic influenza virus using nanobodies
Nature Communications (2022)
-
Structural insights into RNA polymerases of negative-sense RNA viruses
Nature Reviews Microbiology (2021)
-
Biophysical approaches promote understanding of the viral replication cycle
Journal of the Korean Physical Society (2021)
-
Structure of the human metapneumovirus polymerase phosphoprotein complex
Nature (2020)