Global phylogeography and evolutionary history of Shigella dysenteriae type 1

An Erratum to this article was published on 03 October 2016


Together with plague, smallpox and typhus, epidemics of dysentery have been a major scourge of human populations for centuries1. A previous genomic study concluded that Shigella dysenteriae type 1 (Sd1), the epidemic dysentery bacillus, emerged and spread worldwide after the First World War, with no clear pattern of transmission2. This is not consistent with the massive cyclic dysentery epidemics reported in Europe during the eighteenth and nineteenth centuries1,3,4 and the first isolation of Sd1 in Japan in 18975. Here, we report a whole-genome analysis of 331 Sd1 isolates from around the world, collected between 1915 and 2011, providing us with unprecedented insight into the historical spread of this pathogen. We show here that Sd1 has existed since at least the eighteenth century and that it swept the globe at the end of the nineteenth century, diversifying into distinct lineages associated with the First World War, Second World War and various conflicts or natural disasters across Africa, Asia and Central America. We also provide a unique historical perspective on the evolution of antibiotic resistance over a 100-year period, beginning decades before the antibiotic era, and identify a prevalent multiple antibiotic-resistant lineage in South Asia that was transmitted in several waves to Africa, where it caused severe outbreaks of disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geographic distribution and transmission patterns of Shigella dysenteriae type 1 genetic lineages.
Figure 2: Timed phylogeny of a subsample of 125 Shigella dysenteriae type 1 isolates.
Figure 3: Phenotypic and genetic characterization of antibiotic resistance in Shigella dysenteriae type 1.
Figure 4: Evolution of antibiotic resistance of Shigella dysenteriae type 1.


  1. 1

    Kohn, G. C. (ed.) Encyclopedia of Plague and Pestilence (Facts on File New York, 1995).

    Google Scholar 

  2. 2

    Rohmer, L. et al. Genomic analysis of the emergence of 20th century epidemic dysentery. BMC Genomics 15, 355 (2014).

    Article  Google Scholar 

  3. 3

    Castenbrandt, H. K. A forgotten plague: dysentery in Sweden, 1750–1900. Scand. J. Hist. 39, 612–639 (2014).

    Article  Google Scholar 

  4. 4

    Creighton, C. A History of Epidemics in Britain. Volume II: from the Extinction of Plague to the Present Time (Cambridge Univ. Press, 1894).

    Google Scholar 

  5. 5

    Shiga, K. Ueber den erreger der dysenterie in Japan. Vorläufige mitteilung. Zentralbl. Bakteriol. Microbiol. Hyg. 23, 599–600 (1898).

    Google Scholar 

  6. 6

    Manson-Bahr, P. H. Dysentery and diarrhoea in wartime. Br. Med. J. 2, 346–348 (1942).

    Article  Google Scholar 

  7. 7

    Ledingham, J. C. & Penfold, W. J. Recent bacteriological experiences with typhoidal disease and dysentery. Br. Med. J. 2, 704–711 (1915).

    Article  Google Scholar 

  8. 8

    Tribondeau, L. & Fichet, M. Note sur les dysenteries des Dardanelles. Ann. Inst. Pasteur (Paris) 30, 357–362 (1916).

    Google Scholar 

  9. 9

    Pupo, G. M., Lan, R. & Reeves, P. R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl Acad. Sci. USA 97, 10567–10572 (2000).

    Article  Google Scholar 

  10. 10

    Mata, L. J., Gangarosa, E. J., Cáceres, A., Perera, D. R. & Mejicanos, M. L. Epidemic Shiga bacillus dysentery in Central America. I. Etiologic investigations in Guatemala, 1969. J. Infect. Dis. 122, 170–180 (1970).

    Article  Google Scholar 

  11. 11

    Parsonnet, J. et al. Shigella dysenteriae type 1 infections in US travellers to Mexico, 1988. Lancet 2, 543–545 (1989).

    Article  Google Scholar 

  12. 12

    Cobra, C. & Sack, D. A. The Control of Epidemic Dysentery in Africa: Overview, Recommendations, and Checklists (SD Publication Series, Technical Paper No. 27 (USAID, Bureau for Africa, Office of Sustainable Development, 1996);

  13. 13

    Rahaman, M. M., Khan, M. M., Aziz, K. M., Islam, M. S. & Kibriya, A. K. An outbreak of dysentery caused by Shigella dysenteriae type 1 on a coral island in the Bay of Bengal. J. Infect. Dis. 132, 15–19 (1975).

    Article  Google Scholar 

  14. 14

    Taylor, D. N. et al. Introduction and spread of multi-resistant Shigella dysenteriae 1 in Thailand. Am. J. Trop. Med. Hyg. 40, 77–85 (1989).

    Article  Google Scholar 

  15. 15

    Murray, G. R. E. More on bacterial longevity: the Murray collection. ASM News 51, 261–262 (1985).

    Google Scholar 

  16. 16

    Baker, K. S. et al. The Murray collection of pre-antibiotic era Enterobacteriaceae: a unique research resource. Genome Med. 7, 97 (2015).

    Article  Google Scholar 

  17. 17

    Yang, F. et al. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res. 33, 6445–6458 (2005).

    Article  Google Scholar 

  18. 18

    Vongsawan, A. A. et al. The genome of Shigella dysenteriae strain Sd1617 comparison to representative strains in evaluating pathogenesis. FEMS Microbiol. Lett. 362, pii: fnv011 (2015).

  19. 19

    McKenzie, R. et al. Safety and immunogenicity of WRSd1, a live attenuated Shigella dysenteriae type 1 vaccine candidate. Vaccine 26, 3291–3296 (2008).

    Article  Google Scholar 

  20. 20

    Launay, O. et al. Safety and immunogenicity of SC599, an oral live attenuated Shigella dysenteriae type-1 vaccine in healthy volunteers: results of a phase 2, randomized, double-blind placebo-controlled trial. Vaccine 27, 1184–1191 (2009).

    Article  Google Scholar 

  21. 21

    Shiga, K. Observations on the epidemiology of dysentery in Japan. Philipp. J. Sci. 1, 485–500 (1906).

    Google Scholar 

  22. 22

    Holt, K. E. et al. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nature Genet. 44, 1056–1059 (2012).

    Article  Google Scholar 

  23. 23

    Robic, J. Une épidémie de dysenterie bacillaire à Madagascar (1927–1928). Bull. Soc. Path. Exot. 21, 709–713 (1928).

    Google Scholar 

  24. 24

    Guerin, P. J., Grais, R. F., Rottingen, J. A. & Valleron, A. J. & Shigella Study Group. Using European travellers as an early alert to detect emerging pathogens in countries with limited laboratory resources. BMC Public Health 7, 8 (2007).

    Article  Google Scholar 

  25. 25

    Bercion, R. et al. Molecular epidemiology of multidrug-resistant Shigella dysenteriae type 1 causing dysentery outbreaks in Central African Republic, 2003–2004. Trans R. Soc. Trop. Med. Hyg. 100, 1151–1158 (2006).

    Article  Google Scholar 

  26. 26

    Luck, S. N., Turner, S. A., Rajakumar, K., Sakellaris, H. & Adler, B. Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes. Infect. Immun. 69, 6012–6021 (2001).

    Article  Google Scholar 

  27. 27

    Mutreja, A. et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011).

    Article  Google Scholar 

  28. 28

    Wong, V. K. et al. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nature Genet. 47, 632–639 (2015).

    Article  Google Scholar 

  29. 29

    Islam, M. S. et al. Microbiological investigation of diarrhoea epidemics among Rwandan refugees in Zaire. Trans. R. Soc. Trop. Med. Hyg. 89, 506 (1995).

    Article  Google Scholar 

  30. 30

    Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10, 597–602 (2010).

    Article  Google Scholar 

  31. 31

    Murray, E. G. D. An attempt at classification of Bacillus dysenteriae, based upon an examination of the agglutinating properties of fifty-three strains. J. R. Army Med. Corps 31, 257–271 (1918).

    Google Scholar 

  32. 32

    Langendorf, C. et al. Enteric bacterial pathogens in children with diarrhea in Niger: diversity and antimicrobial resistance. PLoS ONE 10, e0120275 (2015).

    Article  Google Scholar 

  33. 33

    Taddei, F., Matic, I. & Radman, M. cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc. Natl Acad. Sci. USA 92, 11736–11740 (1995).

    Article  Google Scholar 

  34. 34

    Picard, B. et al. Mutator natural Escherichia coli isolates have an unusual virulence phenotype. Infect. Immun. 69, 9–14 (2001).

    Article  Google Scholar 

  35. 35

    Grimont, F. & Grimont, P. A. D. Determination of rDNA gene restriction patterns. Methods Mol. Biol. 46, 181–200 (1995).

    Google Scholar 

  36. 36

    Wirth, T. et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60, 1136–1151 (2006).

    Article  Google Scholar 

  37. 37

    Fabre, L. et al. Chromosomal integration of the extended-spectrum beta-lactamase gene blaCTX-M-15 in Salmonella enterica serotype Concord isolates from internationally adopted children. Antimicrob. Agents Chemother. 53, 1808–1816 (2009).

    Article  Google Scholar 

  38. 38

    Turner, S. A., Luck, S. N., Sakellaris, H., Rajakumar, K. & Adler, B. Molecular epidemiology of the SRL pathogenicity island. Antimicrob. Agents Chemother. 47, 727–734 (2003).

    Article  Google Scholar 

  39. 39

    Carattoli, A. et al. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63, 219–228 (2005).

    Article  Google Scholar 

  40. 40

    Aziz, R. K. et al. The RAST server: rapid annotation using subsystems technology. BMC Genomics 9, 75 (2008).

    Article  Google Scholar 

  41. 41

    Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  Google Scholar 

  42. 42

    Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

    Article  Google Scholar 

  43. 43

    Boetzer, M. & Pirovano, W. Toward almost closed genomes with GapFiller. Genome Biol. 13, R56 (2012).

    Article  Google Scholar 

  44. 44

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  Google Scholar 

  45. 45

    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    Article  Google Scholar 

  46. 46

    Carver, T. et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24, 2672–2676 (2008).

    Article  Google Scholar 

  47. 47

    Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

    Article  Google Scholar 

  48. 48

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    Article  Google Scholar 

  49. 49

    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    Article  Google Scholar 

  50. 50

    Letunic, I. & Bork, P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475–W478 (2011).

    Article  Google Scholar 

  51. 51

    Cheng, L., Connor, T. R., Siren, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

    Article  Google Scholar 

  52. 52

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    Article  Google Scholar 

  53. 53

    Connor, T. R. et al. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. eLife 4, e07335 (2015).

    Article  Google Scholar 

  54. 54

    Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).

    Article  Google Scholar 

  55. 55

    Baele, G., Li, W. L., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2013).

    Article  Google Scholar 

  56. 56

    Prosperi, M. C. et al. A novel methodology for large-scale phylogeny partition. Nature Commun. 2, 321 (2011).

    Article  Google Scholar 

  57. 57

    Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).

    Article  Google Scholar 

  58. 58

    Carattoli, A. et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).

    Article  Google Scholar 

  59. 59

    García-Fernández, A. et al. Multilocus sequence typing of IncI1 plasmids carrying extended-spectrum beta-lactamases in Escherichia coli and Salmonella of human and animal origin. J. Antimicrob. Chemother. 61, 1229–1233 (2008).

    Article  Google Scholar 

  60. 60

    García-Fernández, A. et al. Multilocus sequence typing of IncN plasmids. J. Antimicrob. Chemother. 66, 1987–1991 (2011).

    Article  Google Scholar 

  61. 61

    Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    Article  Google Scholar 

  62. 62

    Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, D213–D221 (2015).

    Article  Google Scholar 

  63. 63

    Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).

Download references


This study was supported by the Institut Pasteur and the Institut Pasteur International Network, the Institut de Veille Sanitaire, the French government's Investissement d'Avenir programme, Laboratoire d'Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX-62-IBEID), the Fondation ‘Le Roch-Les Mousquetaires’, the Canetti family through the Georges, Jacques et Elias Canetti Award 2013, the Wellcome Trust through grant 098051 to the Sanger Institute, the NHMRC of Australia (grant 1061409 to K.E.H), the Victorian Life Sciences Computation Initiative (VLSCI) (grant VR0082) and the Indian Council of Medical Research, New Delhi, India. The authors thank A. Dautry-Versat, A.P. Pugsley, C. Bréchot and J. Savall for their support; T. Hieu, C. Soto, E. Bourreterre and B. Faye for technical assistance; Z. Szabó, D. Tremblay for providing isolates; L.R. Hiltzik, N. Baldwin and C. Mackenzie for their searches of the archives; M. Toucas, H. d'Hauteville, E. Aldová, S. Formal, and A.T. Maurelli for information about isolates; D. Nedelec for discussion, I. Gut, M. Gut, L. Ma, D. Harris, K. Oliver and the sequencing teams at the Institut Pasteur and Wellcome Trust Sanger Institute for sequencing the samples. The views expressed in this publication are those of the authors and do not reflect the views of the US Department of the Army or Department of Defense. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information




R.B., P.A.D.G., S.B., N.R.T. and F.-X.W. designed the study. N.S., C.J., K.A.T., R.B., K.K., R.K., J.E.R., L.K., A.K., O.V., C.J.M., T.R., C. Bizet, A.G.S., A.G., A.L.W., M.-C.F., S.L.H., M.J.B., C.J., A.M., A.-L.P., P.R., A.F., E.D., M.V., H.B., M.H., P.A.D.G., P.S., L.B., C.-S.C., D.C., B.C., S.E., G.P.P., A.V.E., H.I., A.K.-K., A.L., M.G., F.G., C.L., M.M., L.A.M.P., G.P.-P., A.P., G.A.S., D.T., C.Y., H.Z., P.S. and F.-X.W. selected and provided characterized isolates and their epidemiological information. E.N., M.L.-C., I.C., C.R., A.T.-D., M.A.-D. and L.B. did the phenotypic experiments and DNA extractions. A.E.M. and S.R.H. provided guidance for genomic analyses. C. Bouchier performed the whole-genome sequencing. M.A. processed the short reads. E.N., N.F., K.K., S.B., K.E.H., J.H., A.J.P., G.G., E.S. and F.-X.W. analysed the genomic sequence data. F.-X.W. wrote the manuscript with major contributions from A.E.M., P.A.D.G., E.D., J.P., P.S., K.E.H., S.B. and N.R.T. All authors contributed to manuscript editing. F.-X.W. oversaw the project.

Corresponding author

Correspondence to François-Xavier Weill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-16, Table 3, Discussion and References (PDF 4476 kb)

Supplementary Table 1

Details of Shigella dysenteriae type 1 isolates and genomes used in this study. (XLSX 181 kb)

Supplementary Table 2

Whole-genome sequences, SNPs and phylogenetic data used in this study. (XLSX 15396 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Njamkepo, E., Fawal, N., Tran-Dien, A. et al. Global phylogeography and evolutionary history of Shigella dysenteriae type 1. Nat Microbiol 1, 16027 (2016).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing