Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection

Abstract

Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections15, creating an infectious reservoir to sustain transmission1,6. It is widely accepted that the maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation7. However, genes involved in this process have been identified in only two of five human-infecting species: Plasmodium falciparum and Plasmodium knowlesi. Furthermore, little is understood about the early events in the establishment of chronic infection in these species. Using a rodent model we demonstrate that from the infecting population, only a minority of parasites, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasites and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintenance of chronic P. falciparum infections79. Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Because pir genes are common to most, if not all, species of Plasmodium10, this process may be a common way of regulating the establishment of chronic infections.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Chronic infections modify the transcriptome of P. chabaudi independently of the adaptive immune response.
Figure 2: Chronic infections are characterized by the expression of distinctive clusters of pir genes in P. chabaudi.
Figure 3: Chronic infections select for virulent P. chabaudi parasites expressing distinctive clusters of pir genes.
Figure 4: Chronicity and virulence of infection are dictated by the initial composition of P. chabaudi population.

References

  1. 1

    Ashley, E. A. & White, N. J. The duration of Plasmodium falciparum infections. Malar. J. 13, 500 (2014).

    Article  Google Scholar 

  2. 2

    Assennato, S. M. et al. Plasmodium genome in blood donors at risk for malaria after several years of residence in Italy. Transfusion 54, 2419–2424 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Brown, K. N. & Brown, I. N. Immunity to malaria: antigenic variation in chronic infections of Plasmodium knowlesi. Nature 208, 1286–1288 (1965).

    CAS  Article  Google Scholar 

  4. 4

    Bruce, M. C. et al. Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology 121(3), 257–272 (2000).

    Article  Google Scholar 

  5. 5

    Vinetz, J. M., Li, J., McCutchan, T. F. & Kaslow, D. C. Plasmodium malariae infection in an asymptomatic 74-year-old Greek woman with splenomegaly. N. Engl. J. Med. 338, 367–371 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Bousema, T., Okell, L., Felger, I. & Drakeley, C. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat. Rev. Microbiol. 12, 833–840 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Scherf, A., Lopez-Rubio, J. J. & Riviere, L. Antigenic variation in Plasmodium falciparum. Annu. Rev. Microbiol. 62, 445–470 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Kyes, S., Horrocks, P. & Newbold, C. Antigenic variation at the infected red cell surface in malaria. Annu. Rev. Microbiol. 55, 673–707 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Warimwe, G. M. et al. Plasmodium falciparum var gene expression is modified by host immunity. Proc. Natl Acad. Sci. USA 106, 21801–21806 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Janssen, C. S., Phillips, R. S., Turner, C. M. & Barrett, M. P. Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. Nucleic Acids Res. 32, 5712–5720 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Cunningham, D., Lawton, J., Jarra, W., Preiser, P. & Langhorne, J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol. Biochem. Parasitol. 170, 65–73 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Spence, P. J. et al. Vector transmission regulates immune control of Plasmodium virulence. Nature 498, 228–231 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Ndungu, F. M. et al. Functional memory B cells and long-lived plasma cells are generated after a single Plasmodium chabaudi infection in mice. PLoS Pathog. 5, e1000690 (2009).

    Article  Google Scholar 

  14. 14

    Otto, T. D. et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 12, 86 (2014).

    Article  Google Scholar 

  15. 15

    Rovira-Graells, N. et al. Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res. 22, 925–938 (2012).

    CAS  Article  Google Scholar 

  16. 16

    de Roode, J. C. et al. Virulence and competitive ability in genetically diverse malaria infections. Proc. Natl Acad. Sci. USA 102, 7624–7628 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Bell, A. S., de Roode, J. C., Sim, D. & Read, A. F. Within-host competition in genetically diverse malaria infections: parasite virulence and competitive success. Evolution 60, 1358–1371 (2006).

    Article  Google Scholar 

  18. 18

    De Roode, J. C., Read, A. F., Chan, B. H. & Mackinnon, M. J. Rodent malaria parasites suffer from the presence of conspecific clones in three-clone Plasmodium chabaudi infections. Parasitology 127, 411–418 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Schneider, P. et al. Virulence, drug sensitivity and transmission success in the rodent malaria, Plasmodium chabaudi. Proc. Biol. Sci. 279, 4677–4685 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Wargo, A. R., de Roode, J. C., Huijben, S., Drew, D. R. & Read, A. F. Transmission stage investment of malaria parasites in response to in-host competition. Proc. Biol. Sci. 274, 2629–2638 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Goel, S. et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat. Med. 21, 314–317 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Moll, K., Palmkvist, M., Ch'ng, J., Kiwuwa, M. S. & Wahlgren, M. Evasion of immunity to Plasmodium falciparum: rosettes of blood group A impair recognition of PfEMP1. PLoS ONE 10, e0145120 (2015).

    Article  Google Scholar 

  23. 23

    Huang, X. et al. Differential spleen remodeling associated with different levels of parasite virulence controls disease outcome in malaria parasite infections. mSphere 1, e00018-15 (2016).

    Article  Google Scholar 

  24. 24

    Gilks, C. F., Walliker, D. & Newbold, C. I. Relationships between sequestration, antigenic variation and chronic parasitism in Plasmodium chabaudi chabaudi—a rodent malaria model. Parasite Immunol. 12, 45–64 (1990).

    CAS  Article  Google Scholar 

  25. 25

    Stevenson, M. M. & Riley, E. M. Innate immunity to malaria. Nat. Rev. Immunol. 4, 169–180 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Carvalho, B. O. et al. On the cytoadhesion of Plasmodium vivax-infected erythrocytes. J. Infect. Dis. 202, 638–647 (2010).

    Article  Google Scholar 

  27. 27

    Claessens, A. et al. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc. Natl Acad. Sci. USA 109, E1772–E1781 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Niang, M. et al. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe. 16, 81–93 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Yam, X. Y. et al. Characterization of the plasmodium interspersed repeats (PIR) proteins of Plasmodium chabaudi indicates functional diversity. Sci. Rep. 6, 23449 (2016).

    CAS  Article  Google Scholar 

  30. 30

    Smith, J. D., Rowe, J. A., Higgins, M. K. & Lavstsen, T. Malaria's deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes. Cell. Microbiol. 15, 1976–1983 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Philpott, K. L. et al. Lymphoid development in mice congenitally lacking T cell receptor alpha beta-expressing cells. Science 256, 1448–1452 (1992).

    CAS  Article  Google Scholar 

  32. 32

    Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin µ chain gene. Nature 350, 423–426 (1991).

    CAS  Article  Google Scholar 

  33. 33

    Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    CAS  Article  Google Scholar 

  34. 34

    Conteh, S. et al. Grammomys surdaster, the natural host for Plasmodium berghei parasites, as a model to study whole organism vaccines against malaria. Am. J. Trop. Med. Hyg. (in press).

  35. 35

    Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    Article  Google Scholar 

  36. 36

    Fougère, A., Jackson, A. P., Bechtsi, D. P. et al. Variant exported blood-stage proteins encoded by Plasmodium multigene families are expressed in liver stages where they are exported into the parasitophorous vacuole. PLoS Pathog. 12, e1005917 (2016).

    Article  Google Scholar 

  37. 37

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Roberts, A. & Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 10, 71–73 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Logan-Klumpler, F. J. et al. GeneDB—an annotation database for pathogens. Nucleic Acids Res. 40, D98–108 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Hu, G. et al. Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat. Biotechnol. 28, 91–98 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Young, J. A. et al. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol. Biochem. Parasitol. 143, 67–79 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Wehrens, R. & Buydens, L. M. C. Self- and super-organizing maps in R: the kohonen package. J. Stat. Softw. 21, 1–19 (2007).

    Article  Google Scholar 

  44. 44

    Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Swain, M. T. et al. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat. Protoc. 7, 1260–1284 (2012).

    CAS  Article  Google Scholar 

  46. 46

    Stanke, M., Schoffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7, 62 (2006).

    Article  Google Scholar 

  47. 47

    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Elemento, O., Slonim, N. & Tavazoie, S. A universal framework for regulatory element discovery across all genomes and data types. Mol. Cell 28, 337–350 (2007).

    CAS  Article  Google Scholar 

  49. 49

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  Article  Google Scholar 

  50. 50

    Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS  Article  Google Scholar 

  51. 51

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  52. 52

    Spence, P. J. et al. Transformation of the rodent malaria parasite Plasmodium chabaudi. Nat. Protoc. 6, 553–561 (2011).

    CAS  Article  Google Scholar 

  53. 53

    Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001101), the UK Medical Research Council (FC001101), and the Wellcome Trust (FC001101); by the Wellcome Trust (grant reference WT101777MA). The Wellcome Trust Sanger Institute is funded by the Wellcome Trust (grant no. WT098051). C.N. is supported by the Wellcome Trust (WT104792) and S.C. and P.E.D. are supported by the Intramural Research Program of the US National Institute of Allergy and Infectious Diseases. The authors acknowledge the Biological Research Facility and Flow Cytometry facility at the Francis Crick Institute for their skilled technical assistance and the staff of the Illumina Bespoke Sequencing team at the Wellcome Trust Sanger Institute for their contribution. The authors thank E. Smith for assistance in making constructs for fluorescence tagging of the parasites, and M. Blackman, C. van Ooij, G. Kassiotis and J. Rayner for critical reading of the manuscript.

Author information

Affiliations

Authors

Contributions

T.B., A.J.R., C.N., M.B. and J.La. designed the study. T.B. designed and performed the mouse experiments with the help of I.T., G.K., S.M. and P.S. A.J.R. designed the sequencing experiments and performed the bioinformatic analyses. M.S. coordinated sequencing experiments. U.B. manually annotated the Plasmodium chabaudi AS genome sequence. D.C. and J.Li. created transgenic parasites. P.E.D. and S.C. performed thicket rat experiments, T.M., E.B. and O.B carried out the experiments in the Brown Norway rats. T.B., A.J.R., C.N., M.B. and J.La. wrote the manuscript.

Corresponding authors

Correspondence to Thibaut Brugat or Adam James Reid or Jean Langhorne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-15, Supplementary Tables 2–4 and Supplementary Tables 8–10. (PDF 12515 kb)

Supplementary Table 1

Lists of genes differentially expressed between acute and chronic phases for wild-type and knockout parasites. (XLSX 270 kb)

Supplementary Table 5

Expression levels of pir genes during chronic and acute stages of infection of wild-type mice, B6 µMT mice, B6.TCRα–/– mice with P. chabaudi AS, wild-type mice with P. chabaudi CB, brown rats with P. berghei and G. surdaster with P. chabaudi AS. (XLSX 220 kb)

Supplementary Table 6

Expression levels of pir genes in cloned parasite lines. (XLSX 51 kb)

Supplementary Table 7

Genes where expression level during the acute phase correlated with the time at recrudescence. (XLSX 57 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brugat, T., Reid, A., Lin, Jw. et al. Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection. Nat Microbiol 2, 16276 (2017). https://doi.org/10.1038/nmicrobiol.2016.276

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing