Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein–Barr virus

Abstract

Most if not all gastric cancers are associated with chronic infection of the stomach mucosa with Helicobacter pylori cagA-positive strains14. Approximately 10% of gastric cancers also harbour Epstein–Barr virus (EBV) in the cancer cells5,6. Following delivery into gastric epithelial cells via type IV secretion7,8, the cagA-encoded CagA protein undergoes tyrosine phosphorylation on the Glu–Pro–Ile–Tyr–Ala (EPIYA) motifs initially by Src family kinases (SFKs) and then by c-Abl9,10. Tyrosine-phosphorylated CagA binds to the pro-oncogenic protein tyrosine phosphatase SHP2 and thereby deregulates the phosphatase activity11,12, which has been considered to play an important role in gastric carcinogenesis13. Here we show that the SHP2 homologue SHP1 interacts with CagA independently of the EPIYA motif. The interaction potentiates the phosphatase activity of SHP1 that dampens the oncogenic action of CagA by dephosphorylating the CagA EPIYA motifs. In vitro infection of gastric epithelial cells with EBV induces SHP1 promoter hypermethylation, which strengthens phosphorylation-dependent CagA action via epigenetic downregulation of SHP1 expression. Clinical specimens of EBV-positive gastric cancers also exhibit SHP1 hypermethylation with reduced SHP1 expression. The results reveal that SHP1 is the long-sought phosphatase that can antagonize CagA. Augmented H. pylori CagA activity, via SHP1 inhibition, might also contribute to the development of EBV-positive gastric cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CagA associates with SHP1 in a tyrosine phosphorylation-independent manner.
Figure 2: Dephosphorylation of CagA by SHP1.
Figure 3: SHP1 counteracts phosphorylation-dependent CagA activity.
Figure 4: Hypermethylation of SHP1 by EBV in gastric epithelial cells.

Similar content being viewed by others

References

  1. Blaser, M. J. et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55, 2111–2115 (1995).

    CAS  PubMed  Google Scholar 

  2. Parsonnet, J., Friedman, G. D., Orentreich, N. & Vogelman, H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40, 297–301 (1997).

    Article  CAS  Google Scholar 

  3. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  Google Scholar 

  4. Plummer, M., Franceschi, S., Vignat, J., Forman, D. & de Martel, C. Global burden of gastric cancer attributable to Helicobacter pylori. Int. J. Cancer 136, 487–490 (2015).

    Article  CAS  Google Scholar 

  5. Fukayama, M., Hino, R. & Uozaki, H. Epstein-Barr virus and gastric carcinoma: virus-host interactions leading to carcinoma. Cancer Sci. 99, 1726–1733 (2008).

    Article  CAS  Google Scholar 

  6. Matsusaka, K. et al. Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res. 71, 7187–7197 (2011).

    Article  CAS  Google Scholar 

  7. Covacci, A. & Rappuoli, R. Tyrosine-phosphorylated bacterial proteins: Trojan horses for the host cell. J. Exp. Med. 191, 587–592 (2000).

    Article  CAS  Google Scholar 

  8. Hatakeyama, M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature Rev. Cancer 4, 688–694 (2004).

    Article  CAS  Google Scholar 

  9. Stein, M. et al. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol. 43, 971–980 (2002).

    Article  CAS  Google Scholar 

  10. Mueller, D. et al. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J. Clin. Invest. 122, 1553–1566 (2012).

    Article  CAS  Google Scholar 

  11. Chan, G., Kalaitzidis, D. & Neel, B. G. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 27, 179–192 (2008).

    Article  CAS  Google Scholar 

  12. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    Article  CAS  Google Scholar 

  13. Ohnishi, N. et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc. Natl Acad. Sci. USA 105, 1003–1008 (2008).

    Article  CAS  Google Scholar 

  14. Chong, Z. Z. & Maiese, K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol. Histopathol. 22, 1251–1267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuo, S. H. et al. Detection of the Helicobacter pylori CagA protein in gastric mucosa-associated lymphoid tissue lymphoma cells: clinical and biological significance. Blood Cancer J. 3, e125 (2013).

    Article  Google Scholar 

  16. Timms, J. F. et al. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol. Cell. Biol. 18, 3838–3850 (1998).

    Article  CAS  Google Scholar 

  17. Mizuno, K. et al. Src homology region 2 (SH2) domain-containing phosphatase-1 dephosphorylates B cell linker protein/SH2 domain leukocyte protein of 65 kDa and selectively regulates c-Jun NH2-terminal kinase activation in B cells. J. Immunol. 165, 1344–1351 (2000).

    Article  CAS  Google Scholar 

  18. Selbach, M. et al. Host cell interactome of tyrosine-phosphorylated bacterial proteins. Cell Host Microbe 5, 397–403 (2009).

    Article  CAS  Google Scholar 

  19. Yang, J. et al. Crystal structure of human protein-tyrosine phosphatase SHP-1. J. Biol. Chem. 278, 6516–6520 (2003).

    Article  CAS  Google Scholar 

  20. Higashi, H. et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl Acad. Sci. USA 99, 14428–14433 (2002).

    Article  CAS  Google Scholar 

  21. Bass, A. J. et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  Google Scholar 

  22. Yanai, H. et al. Epstein-Barr virus-associated gastric carcinoma and atrophic gastritis. J. Clin. Gastroenterol. 29, 39–43 (1999).

    Article  CAS  Google Scholar 

  23. Lima, V. P. et al. In vitro evaluation of probiotics microorganisms adhesion to an artificial caries model. World J. Gastroenterol. 14, 884–891 (1998).

    Article  Google Scholar 

  24. Constanza, M. C. et al. Anti-Helicobacter pylori antibody profiles in Epstein-Barr virus (EBV)-positive and EBV-negative gastric cancer. Helicobacter http://dx.doi.org/10.1111/hel.12249 (2015).

  25. Banville, D., Stocco, R. & Shen, S. H. Human protein tyrosine phosphatase 1C (PTPN6) gene structure: alternate promoter usage and exon skipping generate multiple transcripts. Genomics 27, 165–173 (1995).

    Article  CAS  Google Scholar 

  26. Yamaoka, Y. et al. Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J. Clin. Microbiol. 37, 2274–2279 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kakinoki, R. et al. Re-evaluation of histogenesis of gastric carcinomas: a comparative histopathological study between Helicobacter pylori-negative and H. pylori-positive cases. Dig. Dis. Sci. 54, 614–620 (2009).

    Article  Google Scholar 

  28. Matsuo, T. et al. Low prevalence of Helicobacter pylori-negative gastric cancer among Japanese. Helicobacter 16, 415–419 (2011).

    Article  Google Scholar 

  29. Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M. & Hatakeyama, M. Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J. Biol. Chem. 278, 3664–3670 (2003).

    Article  CAS  Google Scholar 

  30. Chen, J. N., He, D., Tang, F. & Shao, C. K. Epstein-Barr virus-associated gastric carcinoma: a newly defined entity. J. Clin. Gastroenterol. 46, 262–271 (2012).

    Article  CAS  Google Scholar 

  31. Tsao, S. W., Tsang, C. M., To, K. F. & Lo, K. W. The role of Epstein-Barr virus in epithelial malignancies. J. Pathol. 235, 323–333 (2015).

    Article  CAS  Google Scholar 

  32. Yanai, H. et al. Epstein-Barr virus infection in non-carcinomatous gastric epithelium. J. Pathol. 183, 293–298 (1997).

    Article  CAS  Google Scholar 

  33. Fukayama, M. & Ushiku, T. Epstein-Barr virus-associated gastric carcinoma. Pathol. Res. Pract. 207, 529–537 (2011).

    Article  CAS  Google Scholar 

  34. Jiao, H. et al. Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol. Cell. Biol. 16, 6985–6992 (1996).

    Article  CAS  Google Scholar 

  35. Zhang, Z., Shen, K., Lu, W. & Cole, P. A. The role of C-terminal tyrosine phosphorylation in the regulation of SHP-1 explored via expressed protein ligation. J. Biol. Chem. 278, 4668–4674 (2003).

    Article  CAS  Google Scholar 

  36. Tsutsumi, R., Takahashi, A., Azuma, T., Higashi, H. & Hatakeyama, M. Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Mol. Cell. Biol. 26, 261–276 (2006).

    Article  CAS  Google Scholar 

  37. Montano, X. Repression of SHP-1 expression by p53 leads to trkA tyrosine phosphorylation and suppression of breast cancer cell proliferation. Oncogene 28, 3787–3800 (2009).

    Article  CAS  Google Scholar 

  38. Higuchi, M., Tsutsumi, R., Higashi, H. & Hatakeyama, M. Conditional gene silencing utilizing the lac repressor reveals a role of SHP-2 in cagA-positive Helicobacter pylori pathogenicity. Cancer Sci. 95, 442–447 (2004).

    Article  CAS  Google Scholar 

  39. Lin, W. C. et al. Translocation of Helicobacter pylori CagA into Human B lymphocytes, the origin of mucosa-associated lymphoid tissue lymphoma. Cancer Res. 70, 5740–5748 (2010).

    Article  CAS  Google Scholar 

  40. Keilhack, H. et al. Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling. J. Biol. Chem. 273, 24839–24846 (1998).

    Article  CAS  Google Scholar 

  41. Hayashi, T. et al. Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe 12, 20–33 (2012).

    Article  CAS  Google Scholar 

  42. Nagase, L., Hayashi, T., Senda, T. & Hatakeyama, M. Dramatic increase in SHP2 binding activity of Helicobacter pylori Western CagA by EPIYA-C duplication: its implications in gastric carcinogenesis. Sci. Rep. 5, 15749 (2015).

    Article  CAS  Google Scholar 

  43. Mittal, Y., Pavlova, Y., Garcia-Marcos, M. & Ghosh, P. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates Gα-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. J. Biol. Chem. 286, 32404–32415 (2011).

    Article  CAS  Google Scholar 

  44. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  CAS  Google Scholar 

  45. Imai, S., Nishikawa, J. & Takada, K. Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J. Virol. 72, 4371–4378 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaneda, A., Matsusaka, K., Aburatani, H. & Fukayama, M. Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res. 72, 3445–3450 (2012).

    Article  CAS  Google Scholar 

  47. Nagase, L., Murata-Kamiya, N. & Hatakeyama, M. Potentiation of Helicobacter pylori CagA protein virulence through homodimerization. J. Biol. Chem. 286, 33622–33631 (2011).

    Article  CAS  Google Scholar 

  48. Yagi, K. et al. Three DNA methylation epigenotypes in human colorectal cancer. Clin. Cancer Res. 16, 21–33 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Takashi Matozaki for SHP1 cDNA. We also thank Ping-Ning Hsu for BJAB cells. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, and Technology (MEXT) of Japan (M.H.), and by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Agency for Medical Research and Development (A.K.).

Author information

Authors and Affiliations

Authors

Contributions

P.S., A.Ka., and M.H. designed the experiments. P.S., N.M-K., Y.S., L.N., S.N., K.M., S.F., A.Ku., and T.H. performed the experiments. P.S., N.M-K., T.H., Y.S., S.N., K.M., S.F. and A.Ka. analysed data. L.N., M.U., Y.S., A.Ka. and M.F. provided materials. P.S., A.Ka., and M.H. wrote the paper.

Corresponding author

Correspondence to Masanori Hatakeyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Tables 1-6, Figures 1-21 and References (PDF 17668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saju, P., Murata-Kamiya, N., Hayashi, T. et al. Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein–Barr virus. Nat Microbiol 1, 16026 (2016). https://doi.org/10.1038/nmicrobiol.2016.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.26

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer