Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The anti-inflammatory drug mesalamine targets bacterial polyphosphate accumulation


Mesalamine serves as the gold standard in treating ulcerative colitis. However, its precise mechanism(s) of action remains unclear. Here, we show that mesalamine treatment rapidly decreases polyphosphate levels in diverse bacteria, including members of the human gut microbiome. This decrease sensitizes bacteria towards oxidative stress, reduces colonization and attenuates persister cell and biofilm formation, suggesting that mesalamine aids in diminishing the capacity of bacteria to persist within chronically inflamed environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mesalamine mimics ppk mutant phenotypes.
Figure 2: Mesalamine reduces polyP levels in gut microbiota.


  1. 1

    Rao, N. N., Gómez-García, M. R. & Kornberg, A. Annu. Rev. Biochem. 78, 605–647 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Gray, M. J. et al. Mol. Cell. 53, 689–699 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Hauso, Ø., Martinsen, T. C. & Waldum, H. Scand. J. Gastroenterol. 50, 933–941 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Feagan, B. G. & MacDonald, J. K. Inflamm. Bowel Dis. 18, 1785–1794 (2012).

    Article  Google Scholar 

  5. 5

    Kuroda, A. et al. Proc. Natl Acad. Sci. USA 96, 14264–14269 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Shiba, T., Tsutsumi, K. & Yano, H. Proc. Natl Acad. Sci. USA 94, 11210–11215 (1997).

    CAS  Article  Google Scholar 

  7. 7

    van Hogezand, R. A. et al. Eur. J. Clin. Pharmacol. 43, 189–192 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Andrews, C. N. et al. Aliment. Pharmacol. Ther. 34, 374–383 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Yu, A. et al. Mol. Pharmaceutics (in the press).

  10. 10

    Jandhyala, S. M. et al. World J. Gastroenterol. 21, 8787–8803 (2015).

    Article  Google Scholar 

  11. 11

    Lim, W. C., Wang, Y., MacDonald, J. K. & Hanauer, S. Cochrane Database Syst. Rev. (2016).

  12. 12

    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, 1999).

    Google Scholar 

  13. 13

    Datsenko, K. A. & Wanner, B. L. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Liberati, N. T. et al. Proc. Natl Acad. Sci. USA 103, 2833–2838 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Cameron, D. E., Urbach, J. M. & Mekalanos, J. J. Proc. Natl Acad. Sci. USA 105, 8736–8741 (2008).

  16. 16

    Ault-Riché, D. et al. J. Bacteriol. 180, 1841–1847 (1998).

    PubMed Central  Google Scholar 

  17. 17

    Birnboim, H. C. Nucleic Acids Res. 7, 1513–1523 (1979).

    PubMed Central  Google Scholar 

  18. 18

    Kumble, K. D. & Kornberg, A. J. Biol. Chem. 270, 5818–5822 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Brawerman, G., Mendecki, J. & Lee, S. Y. Biochemistry. 11, 637–641 (1972).

    CAS  Article  Google Scholar 

  20. 20

    Maciag, A. et al. Nucleic Acids Res. 39, 5338–5355 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Pfaffl, M. W. Nucleic Acids Res. 29, e45 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Gray, M. J., Wholey, W.-Y., Parker, B. W., Kim, M. & Jakob, U. J. Biol. Chem. 288, 13789–13798 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Cremers, C. M. et al. Mol Cell. 63, 768–780 (2016).

    CAS  Article  Google Scholar 

  24. 24

    Zhou, Y., Smith, D. R., Hufnagel, D. A. & Chapman, M. R. Methods Mol. Biol. 966, 53–75 (2013).

    Google Scholar 

  25. 25

    Maisonneuve, E. & Gerdes, K. Cell 157, 539–548 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Portal-Celhay, C. & Blaser, M. J. Infect. Immun. 80, 1288–1299 (2012).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the University of Michigan Center for Chemical Genomics for assistance with high-throughput screening. The authors thank K. Vendrov for killing the mice and preparing caecal samples, D. Knoefler for help with the statistical analyses and C.M. Cremers for help with establishing the assay for quantification of steady-state polyP levels. The authors thank L. Xie and K. Wan for their help with the purification of PPX and PPK, respectively. This work was funded by the National Institute of Health grants GM065318 (to U.J.), AI090871 and AI24255 (to V.B.Y.) and by FDA grants HHSF223201000082C and HHSF223201300460A (to D.S.). Clinical samples were collected with help from the Michigan Institute for Clinical & Health Research (MICHR) NIH grant UL1TR000433. J.-U.D. is supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft grant DA1697/1-1.

Author information




J.-U.D., M.J.G., D.B. and F.B. designed and carried out experiments. M.J.K., Y.W., J.R.B., W.L.H. and D.S. designed and carried out the biopsies of the human GI samples and the subsequent analyses of mesalamine concentrations. J.-U.D., M.J.G. and U.J. conceived the study, interpreted the results and wrote the manuscript. V.B.Y. was involved in conceiving the experiments for detection of polyP in the caecal contents of mice. J.L. was involved in establishing the assay for quantification of steady-state polyP levels.

Corresponding author

Correspondence to Ursula Jakob.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2, Supplementary Table 1, Supplementary Notes and Discussion, Supplementary Methods and Supplementary References. (PDF 2242 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dahl, JU., Gray, M., Bazopoulou, D. et al. The anti-inflammatory drug mesalamine targets bacterial polyphosphate accumulation. Nat Microbiol 2, 16267 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing