Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global and regional dissemination and evolution of Burkholderia pseudomallei


The environmental bacterium Burkholderia pseudomallei causes an estimated 165,000 cases of human melioidosis per year worldwide and is also classified as a biothreat agent. We used whole genome sequences of 469 B. pseudomallei isolates from 30 countries collected over 79 years to explore its geographic transmission. Our data point to Australia as an early reservoir, with transmission to Southeast Asia followed by onward transmission to South Asia and East Asia. Repeated reintroductions were observed within the Malay Peninsula and between countries bordered by the Mekong River. Our data support an African origin of the Central and South American isolates with introduction of B. pseudomallei into the Americas between 1650 and 1850, providing a temporal link with the slave trade. We also identified geographically distinct genes/variants in Australasian or Southeast Asian isolates alone, with virulence-associated genes being among those over-represented. This provides a potential explanation for clinical manifestations of melioidosis that are geographically restricted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Phylogeny and pan-genome of B. pseudomallei.
Figure 2: Timeline of trans-continental and sub-regional spread of B. pseudomallei.
Figure 3: Region-specific genetic signatures.


  1. 1

    Limmathurotsakul, D. et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat. Microbiol. 1, 15008 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Nandi, T. et al. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Res. 25, 129–141 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Johnson, S. L. et al. Whole-genome sequences of 80 environmental and clinical isolates of Burkholderia pseudomallei. Genome Announc. 3, e01282-14 (2015).

    Article  Google Scholar 

  4. 4

    Holden, M. T. G. et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl Acad. Sci. USA 101, 14240–14245 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Price, E. P. et al. Unprecedented melioidosis cases in Northern Australia caused by an Asian Burkholderia pseudomallei strain identified by using large-scale comparative genomics. Appl. Environ. Microbiol. 82, 954–963 (2015).

    Article  Google Scholar 

  6. 6

    Pearson, T. et al. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol. 7, 78 (2009).

    Article  Google Scholar 

  7. 7

    Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Dale, J. et al. Epidemiological tracking and population assignment of the non-clonal bacterium, Burkholderia pseudomallei. PLoS Negl. Trop. Dis. 5, e1381 (2011).

    Article  Google Scholar 

  9. 9

    Gee, J. E., Allender, C. J., Tuanyok, A., Elrod, M. G. & Hoffmaster, A. R. Burkholderia pseudomallei type G in western hemisphere. Emerg. Infect. Dis. 20, 682–684 (2014).

    Article  Google Scholar 

  10. 10

    Sarovich, D. S. et al. Phylogenomic analysis reveals an Asian origin for African Burkholderia pseudomallei and further supports melioidosis endemicity in Africa. mSphere 1, e00089-15 (2016).

    Article  Google Scholar 

  11. 11

    Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

    Article  Google Scholar 

  12. 12

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Kolchin, P. American Slavery: 1619–1877 (Penguin, 1995).

    Google Scholar 

  14. 14

    Thomas, H. The Slave Trade, The Story of the Atlantic Slave Trade: 1440–1870 (Simon & Schuster, 1997).

    Google Scholar 

  15. 15

    Nguyen, T. D. The Mekong River and the Struggle for Indochina: Water, War and Peace (Praeger, 1999).

    Google Scholar 

  16. 16

    Liu, J. H., Lawrence, B., Ward, C. & Abraham, S. Social representations of history in Malaysia and Singapore: on the relationship between national and ethnic identity. Asian J. Soc. Psychol. 5, 3–20 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Currie, B. J. Melioidosis: evolving concepts in epidemiology, pathogenesis, and treatment. Semin. Respir. Crit. Care Med. 36, 111–125 (2015).

    Article  Google Scholar 

  18. 18

    Lees, J. A. et al. Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nat. Commun. 7, 12797 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Sarovich, D. S. et al. Variable virulence factors in Burkholderia pseudomallei (melioidosis) associated with human disease. PLoS ONE 9, e91682 (2014).

    Article  Google Scholar 

  20. 20

    Tuanyok, A. et al. A horizontal gene transfer event defines two distinct groups within Burkholderia pseudomallei that have dissimilar geographic distributions. J. Bacteriol. 189, 9044–9049 (2007).

    CAS  Article  Google Scholar 

  21. 21

    French, C. T. et al. Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc. Natl Acad. Sci. USA 108, 12095–12100 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Benanti, E. L., Nguyen, C. M. & Welch, M. D. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 161, 348–360 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Tuanyok, A. et al. Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics 9, 566 (2008).

    Article  Google Scholar 

  24. 24

    Willcocks, S. J., Denman, C. C., Atkins, H. S. & Wren, B. W. Intracellular replication of the well-armed pathogen Burkholderia pseudomallei. Curr. Opin. Microbiol. 29, 94–103 (2016).

    CAS  Article  Google Scholar 

  25. 25

    Chen, Y. et al. Characterization and analysis of the Burkholderia pseudomallei BsaN virulence regulon. BMC Microbiol. 14, 206 (2014).

    Article  Google Scholar 

  26. 26

    Bast, A. et al. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages. PLoS Pathogens 10, e1003986 (2014).

    Article  Google Scholar 

  27. 27

    Wallace, A. R. On the physical geography of the Malay archipelago. J. R. Geogr. Soc. Lond. 7, 205–212 (1863).

    Google Scholar 

  28. 28

    Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).

    Article  Google Scholar 

  29. 29

    Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Chewapreecha, C. et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat. Genet. 46, 305–309 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Nandi, T. et al. A genomic survey of positive selection in Burkholderia pseudomallei provides insights into the evolution of accidental virulence. PLoS Pathogens 6, e1000845 (2010).

    Article  Google Scholar 

  33. 33

    Spring-Pearson, S. M. et al. Pangenome analysis of Burkholderia pseudomallei: genome evolution preserves gene order despite high recombination rates. PLoS ONE 10, e0140274 (2015).

    Article  Google Scholar 

  34. 34

    Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  Google Scholar 

  35. 35

    Harris, S. R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Page, A. J. et al. SNP-sites: rapid efficient extraction of SNPs from multiFASTA alignments. Microb. Genomics (2016).

  37. 37

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9, 539 (2008).

    Article  Google Scholar 

  39. 39

    Cheng, L., Connor, T. R., Siren, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

    CAS  Article  Google Scholar 

  40. 40

    Croucher, N. J. et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat. Genet. 45, 656–663 (2013).

    CAS  Article  Google Scholar 

  41. 41

    Assefa, S., Keane, T. M., Otto, T. D., Newbold, C. & Berriman, M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 25, 1968–1969 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Carver, T. J. et al. ACT: the artemis comparison tool. Bioinformatics 21, 3422–3423 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Harris, S. R. et al. Genome specialization and decay of the strangles pathogen, Streptococcus equi, is driven by persistent infection. Genome Res. 25, 1360–1371 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v.1.6 (2014),

  45. 45

    Ho, S. Y. W. & Duchene, S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol. Ecol. 23, 5947–5965 (2014).

    Article  Google Scholar 

  46. 46

    Murray, G. G. R. et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol. Evol. 7, 80–89 (2016).

    Article  Google Scholar 

  47. 47

    Lieberman, T. D. et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 43, 1275–1280 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Mathers, A. J. et al. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob. Agents Chemother. 59, 1656–1663 (2015).

    Article  Google Scholar 

  49. 49

    Young, B. C. et al. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc. Natl Acad. Sci. USA 109, 4550–4555 (2012).

    CAS  Article  Google Scholar 

  50. 50

    Croucher, N. J. et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331, 430–434 (2011).

    CAS  Article  Google Scholar 

  51. 51

    Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  52. 52

    Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (2006).

    Article  Google Scholar 

  53. 53

    Laabei, M. et al. Predicting the virulence of MRSA from its genome sequence. Genome Res. 24, 839–849 (2014).

    CAS  Article  Google Scholar 

  54. 54

    Chewapreecha, C. et al. Comprehensive identification of single nucleotide polymorphisms associated with β-lactam resistance within pneumococcal mosaic genes. PLoS Genet. 10, e1004547 (2014).

    Article  Google Scholar 

  55. 55

    Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  Article  Google Scholar 

  56. 56

    Ooi, W. F. et al. The condition-dependent transcriptional landscape of Burkholderia pseudomallei. PLoS Genet. 9, e1003795 (2013).

    CAS  Article  Google Scholar 

  57. 57

    Winsor, G. L. et al. The Burkholderia genome database: facilitating flexible queries and comparative analyses. Bioinformatics 24, 2803–2804 (2008).

    CAS  Article  Google Scholar 

  58. 58

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008);

  59. 59

    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the Wellcome Trust Sanger Institute library construction, sequence and core informatics teams and E. Blane for their technical support. The authors thank T. Nandi and P. Tan at Genome Institute of Singapore, and E. Price and D. Sarovich at Menzies School of Health Research, Australia, for providing access to publically available WGS data. The authors thank the following people who provided isolates or DNA: N. Day, MORU, Faculty of Tropical Medicine, Mahidol University; P. Newton, M. Vongsouvath, M. Mayway, V. Davong, O. Lattana, C. Moore, S. Rattanavong and the directors and staff of Mahosot Hospital, Vientiane, Lao PDR; V. Kumar, Ankor Hospital for Children, Siem Reap, Cambodia; J. Campbell, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; H. Suk Wai, Ocean Park Corporation, Hong Kong SAR, China; C. Kham and T. Phe, Sihanouk Hospital Centre of Hope, Phnom Penh, Cambodia; J.W. Wiersinga, Academic Medical Center (AMC), Amsterdam, the Netherlands; J. Jacobs, ITM, Antwerp, Belgium; J.E. Russell, National Collection of Type Cultures, UK; T. Pitt, NHS Blood and Transplant, UK; D. Godoy, Imperial College, UK; S. Emonet, Geneva University Hospitals, Switzerland; S. Morpeth, Middlemore Hospital, New Zealand and J. Gee, CDC, USA. C.C. is a Sir Henry Wellcome post-doctoral Fellow (grant no. 107376/Z/15/Z). J.C., M.V. and Z.Y. were supported by the COIN Centre of Excellence and Z.Y. through an HIIT post-doctoral fellowship. A.E.M. is supported by a Biotechnology and Biological Sciences Research Council grant (no. BB/M014088/1). B.G.S. was supported by Wellcome Trust grant no. WT089472. D.A.B.D. and R.P. are supported by Wellcome Trust grants 106698/Z/14 and B9R00760. D.L. and V.W. are supported by Wellcome Trust grant 089275/Z/09/Z. M.M. and B.J.C. are supported by the Australian National Health and Medical Research Council through project grants 1046812 and 1098337. This publication presents independent research supported by the Health Innovation Challenge Fund (WT098600, HICF-T5-342), a parallel funding partnership between the Department of Health and the Wellcome Trust. The views expressed in this publication are those of the author(s) and not necessarily those of the Department of Health or the Wellcome Trust. This project was also funded by a grant awarded to the Wellcome Trust Sanger Institute (no. 098051).

Author information




A.T., B.D.S., S.L.H., C.B., M.M., V.W., D.L., R.P., B.G.S., P.K., D.A.B.D. and B.J.C. collected and provided the samples for the study. C.C. designed and performed the analyses. M.T.G.H., S.R.H., A.E.M., J.C., J.P. and G.D. designed and contributed materials and analysis tools. M.V., N.V., Z.Y., and J.C. performed the kmer-based analyses in the first draft. C.C. performed the kmer-based analysis in the revised draft. Z.Y. and J.C. performed cluster analyses. S.J.P. was responsible for management of the study. S.J.P. and C.C. wrote the paper with input from all authors. All authors approved the manuscript prior to submission.

Corresponding authors

Correspondence to Claire Chewapreecha or Sharon J. Peacock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Note, Supplementary References. (PDF 13377 kb)

Supplementary Data 1

Epidemiological data. (XLSX 77 kb)

Supplementary Data 2

Frequency, association scores and direction of association for significant kmers identified in Australasian and Southeast Asian GWAS analyses. (TXT 8024 kb)

Supplementary Data 3

Raw kmer sequences. (TXT 8583 kb)

Supplementary Data 4

Coding sequences found in region-specific loci; summary data of all annotated coding sequences located in 468 Australasia- and 14 Southeast Asia-specific loci. (TXT 199 kb)

Supplementary Data 5

COG, GO and pathway terms with significant kmer enrichment. (XLSX 88 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chewapreecha, C., Holden, M., Vehkala, M. et al. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat Microbiol 2, 16263 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing