Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster

Abstract

The abrupt onslaught of the syphilis pandemic that started in the late fifteenth century established this devastating infectious disease as one of the most feared in human history1. Surprisingly, despite the availability of effective antibiotic treatment since the mid-twentieth century, this bacterial infection, which is caused by Treponema pallidum subsp. pallidum (TPA), has been re-emerging globally in the last few decades with an estimated 10.6 million cases in 2008 (ref. 2). Although resistance to penicillin has not yet been identified, an increasing number of strains fail to respond to the second-line antibiotic azithromycin3. Little is known about the genetic patterns in current infections or the evolutionary origins of the disease due to the low quantities of treponemal DNA in clinical samples and difficulties in cultivating the pathogen4. Here, we used DNA capture and whole-genome sequencing to successfully interrogate genome-wide variation from syphilis patient specimens, combined with laboratory samples of TPA and two other subspecies. Phylogenetic comparisons based on the sequenced genomes indicate that the TPA strains examined share a common ancestor after the fifteenth century, within the early modern era. Moreover, most contemporary strains are azithromycin-resistant and are members of a globally dominant cluster, named here as SS14-Ω. The cluster diversified from a common ancestor in the mid-twentieth century subsequent to the discovery of antibiotics. Its recent phylogenetic divergence and global presence point to the emergence of a pandemic strain cluster.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: De novo genome assemblies and phylogenetic reconstruction.
Figure 2: Median-joining (MJ) network analysis and geographic distribution of the SS14 and Nichols clades.

References

  1. 1

    Gall, G. E. C., Lautenschlager, S. & Bagheri, H. C. Quarantine as a public health measure against an emerging infectious disease: syphilis in Zurich at the dawn of the modern era (1496–1585). GMS Hyg. Infect. Control 11, 13 (2016).

    Google Scholar 

  2. 2

    Rowley, J. et al. Global Incidence and Prevalence of Selected Curable Sexually Transmitted Infections, 2008 (World Health Organization, 2012).

    Google Scholar 

  3. 3

    Stamm, L. V. Global challenge of antibiotic-resistant Treponema pallidum. Antimicrob. Agents Chemother. 54, 583–589 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Fraser, C. M. et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Quétel, C. History of Syphilis (Johns Hopkins Univ. Press, 1990).

    Google Scholar 

  6. 6

    Fernandez de Oviedo y Valdes, G. Sumario de la natural historia de las Indias (Fondo de Cultura Economico, 1526).

    Google Scholar 

  7. 7

    Harper, K. N., Zuckerman, M. K., Harper, M. L., Kingston, J. D. & Armelagos, G. J. The origin and antiquity of syphilis revisited: an appraisal of Old World pre-Columbian evidence for treponemal infection. Am. J. Phys. Anthropol. 146(Suppl 53), 99–133 (2011).

    Article  Google Scholar 

  8. 8

    Šmajs, D., Norris, S. J. & Weinstock, G. M. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect. Genet. Evol. 12, 191–202 (2012).

    Article  Google Scholar 

  9. 9

    Giacani, L. et al. Complete genome sequence of the Treponema pallidum subsp. pallidum Sea81-4 strain. Genome Announc. 2, e00333-14 (2014).

    Article  Google Scholar 

  10. 10

    Štaudová, B. et al. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes. PLoS Negl. Trop. Dis. 8, e3261 (2014).

    Article  Google Scholar 

  11. 11

    Marra, C. M. et al. Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J. Infect. Dis. 202, 1380–1388 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Grillová, L. et al. Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: increased prevalence of identified genotypes and of isolates with macrolide resistance. J. Clin. Microbiol. 52, 3693–3700 (2014).

    Article  Google Scholar 

  13. 13

    Hodges, E. et al. Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing. Nat. Protoc. 4, 960–974 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.prot5448 (2010).

  15. 15

    Pětrošová, H. et al. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS ONE 8, e74319 (2013).

    Article  Google Scholar 

  16. 16

    Centurion-Lara, A. et al. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl. Trop. Dis. 7, e2222 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Mikalova, L. et al. Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions. PLoS ONE 5, e15713 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Achtman, M. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu. Rev. Microbiol. 62, 53–70 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Pětrošová, H. et al. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl. Trop. Dis. 6, e1832 (2012).

    Article  Google Scholar 

  20. 20

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    Article  Google Scholar 

  21. 21

    Lukehart, S. A. & Giacani, L. When is syphilis not syphilis? Or is it? Sex. Transm. Dis. 41, 554–555 (2014).

    Article  Google Scholar 

  22. 22

    Stadler, T., Kuhnert, D., Bonhoeffer, S. & Drummond, A. J. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl Acad. Sci. USA 110, 228–233 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Holt, K. E. et al. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat. Genet. 44, 1056–1059 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Mutreja, A. et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Giacani, L. et al. Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen. PLoS Negl. Trop. Dis. 6, e1698 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Strouhal, M. et al. Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect. Immun. 75, 5859–5866 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Marra, C. M. et al. Antibiotic selection may contribute to increases in macrolide-resistant Treponema pallidum. J. Infect. Dis. 194, 1771–1773 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Mitchell, S. J. et al. Azithromycin-resistant syphilis infection: San Francisco, California, 2000–2004. Clin. Infect. Dis. 42, 337–345 (2006).

    Article  Google Scholar 

  29. 29

    Morshed, M. & Jones, H. Treponema pallidum macrolide resistance in BC. Can. Med. Assoc. J. 174, 349 (2006).

    Article  Google Scholar 

  30. 30

    Matejkova, P. et al. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J. Med. Microbiol. 58, 832–836 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Stamm, L. V. & Bergen, H. L. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob. Agents Chemother. 44, 806–807 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Šmajs, D., Paštěková, L. & Grillová, L. Macrolide resistance in the syphilis spirochete, Treponema pallidum ssp. pallidum: can we also expect macrolide-resistant yaws strains? Am. J. Trop. Med. Hyg. 93, 678–683 (2015).

    Article  Google Scholar 

  33. 33

    Geisler, W. M. et al. Azithromycin versus doxycycline for urogenital Chlamydia trachomatis infection. N. Engl. J. Med. 373, 2512–2521 (2015).

    CAS  Article  Google Scholar 

  34. 34

    Centurion-Lara, A. in Pathogenic Treponema: Molecular and Cellular Biology (eds Radolf, J. D. & Lukehart, S. A. ) 267–283 (Caister Academic, 2006).

    Google Scholar 

  35. 35

    Knell, R. J. Syphilis in renaissance Europe: rapid evolution of an introduced sexually transmitted disease? Proc. Biol. Sci. 271(Suppl 4), S174–S176 (2004).

    PubMed  PubMed Central  Google Scholar 

  36. 36

    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Peltzer, A. et al. EAGER: Efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).

    Article  Google Scholar 

  38. 38

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  39. 39

    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Simpson, J. T. & Durbin, R. Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 22, 549–556 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504 (2002).

    CAS  Article  Google Scholar 

  42. 42

    Strimmer, K. & von Haeseler, A. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13, 964–969 (1996).

    CAS  Article  Google Scholar 

  43. 43

    Strimmer, K. & Rambaut, A. Inferring confidence sets of possibly misspecified gene trees. Proc. R. Soc. B 269, 137–142 (2002).

    Article  Google Scholar 

  44. 44

    Shimodaira, H. & Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114–1116 (1999).

    Article  Google Scholar 

  45. 45

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS  Article  Google Scholar 

  46. 46

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).

    CAS  Article  Google Scholar 

  48. 48

    Rambaut, A., Suchard, M., Xie, D. & Drummond, A. Tracer v1.6. (2014); http://beast.bio.ed.ac.uk/Tracer

  49. 49

    Rambaut, A. FigTree v.1.4.2. (2014); http://tree.bio.ed.ac.uk/software/figtree/

  50. 50

    Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS  Article  Google Scholar 

  51. 51

    Dai, T. et al. Molecular typing of Treponema pallidum: a 5-year surveillance in Shanghai, China. J. Clin. Microbiol. 50, 3674–3677 (2012).

    CAS  Article  Google Scholar 

  52. 52

    Flasarová, M. et al. Sequencing-based molecular typing of Treponema pallidum strains in the Czech Republic: all identified genotypes are related to the sequence of the SS14 strain. Acta Derm. Venereol. 92, 669–674 (2012).

    Article  Google Scholar 

  53. 53

    Grange, P. A. et al. Molecular subtyping of Treponema pallidum in Paris, France. Sex. Transm. Dis. 40, 641–644 (2013).

    CAS  Article  Google Scholar 

  54. 54

    Grimes, M. et al. Two mutations associated with macrolide resistance in Treponema pallidum: increasing prevalence and correlation with molecular strain type in Seattle, Washington. Sex. Transm. Dis. 39, 954–958 (2012).

    CAS  Article  Google Scholar 

  55. 55

    Peng, R.-R. et al. Molecular typing of Treponema pallidum causing early syphilis in China: a cross-sectional study. Sex. Transm. Dis. 39, 42–45 (2012).

    Article  Google Scholar 

  56. 56

    Tian, H. et al. Molecular typing of Treponema pallidum: identification of a new sequence of tp0548 gene in Shandong, China. Sex. Transm. Dis. 41, 551 (2014).

    Article  Google Scholar 

  57. 57

    Tipple, C., McClure, M. O. & Taylor, G. P. High prevalence of macrolide resistant Treponema pallidum strains in a London centre. Sex. Transm. Infect. 87, 486–488 (2011).

    Article  Google Scholar 

  58. 58

    Wu, B.-R. et al. Multicentre surveillance of prevalence of the 23S rRNA A2058G and A2059G point mutations and molecular subtypes of Treponema pallidum in Taiwan, 2009–2013. Clin. Microbiol. Infect. 20, 802–807 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Research in Zurich by N.A. and H.C.B. was funded by the Forschungskredit and the University of Zurich. A.H. was funded by an ERC Starting Grant. F.G.C. and L.S.B. were funded by MINECO (Spanish Government) and PROMETEO (Generalitat Valenciana). K.I.B. was funded by the Social Sciences and Humanities Research Council of Canada. L.M. was funded by the Faculty of Medicine of Masaryk University. The authors thank S. Lautenschlager for guidance, A. Drummond for input on BEAST, S. Lukehart for providing HaitiB, Sea86-1, Bal3, Bal9, Bal73-1 and Grady1 strain DNA, and C. Marra for providing UW249B and UW231B strain DNA. The authors also thank A. Messina and the S3IT at the University of Zurich for providing computational resources and services, and I. Schoechli and L. Keller's group for their valued support.

Author information

Affiliations

Authors

Contributions

N.A. and H.C.B. conceived the investigation. N.A., L.G., S.J.N., D.S., P.P.B., F.G.-C., K.N., J.K. and H.C.B. devised research and analyses. N.A., G.J., A.P., A.S., A.H., M.S., L.G., L.S.-B., D.K., L.R.D., L.M., F.G.-C. and K.N. analysed data. N.A., V.J.S., M.S., L.G., K.I.B., L.R.D., L.G.V. and P.P.B. contributed to or performed experiments. M.S., L.G., S.B., P.K., P.F., P.R.G., M.A.P., L.G.V., M.R.F., A.M., D.S., P.P.B. and F.G.-C. provided clinical samples and A.C.L., L.G., S.J.N. and D.S. provided laboratory samples. N.A. and H.C.B. wrote the manuscript with significant contributions from M.S., L.G., L.S.-B., D.K., K.I.B., L.R.D., L.M., S.B., L.G., S.J.N., D.S., P.P.B., F.G.-C., K.N. and J.K. and with comments from all co-authors.

Corresponding authors

Correspondence to Natasha Arora or Fernando González-Candelas or Kay Nieselt or Johannes Krause or Homayoun C. Bagheri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Tables 3, 5, 6, 9, 10; Legends for all Supplementary Tables; Supplementary Figures 1-6; Supplementary References. (PDF 820 kb)

Supplementary Table 1

Sample Information. (XLSX 14 kb)

Supplementary Table 2

Read preprocessing, mapping and genotyping results. (XLSX 23 kb)

Supplementary Table 4

SNP calls for samples used in genome-wide data analyses (n = 39). (XLSX 14 kb)

Supplementary Table 7

Putative recombinant genes identified by Gubbins and ClonalFrameML. (XLSX 16 kb)

Supplementary Table 8

Clade classification and mutations associated with antibiotic resistance (for all sequenced and published samples). (XLSX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arora, N., Schuenemann, V., Jäger, G. et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol 2, 16245 (2017). https://doi.org/10.1038/nmicrobiol.2016.245

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing