Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relic DNA is abundant in soil and obscures estimates of soil microbial diversity

This article has been updated

Abstract

Extracellular DNA from dead microorganisms can persist in soil for weeks to years13. Although it is implicitly assumed that the microbial DNA recovered from soil predominantly represents intact cells, it is unclear how extracellular DNA affects molecular analyses of microbial diversity. We examined a wide range of soils using viability PCR based on the photoreactive DNA-intercalating dye propidium monoazide4. We found that, on average, 40% of both prokaryotic and fungal DNA was extracellular or from cells that were no longer intact. Extracellular DNA inflated the observed prokaryotic and fungal richness by up to 55% and caused significant misestimation of taxon relative abundances, including the relative abundances of taxa integral to key ecosystem processes. Extracellular DNA was not found in measurable amounts in all soils; it was more likely to be present in soils with low exchangeable base cation concentrations, and the effect of its removal on microbial community structure was more profound in high-pH soils. Together, these findings imply that this ‘relic DNA’ remaining in soil after cell death can obscure treatment effects, spatiotemporal patterns and relationships between microbial taxa and environmental conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relic DNA inflates soil microbial diversity estimates.
Figure 2: Relic DNA removal can have a significant effect on community structure within a given soil sample.
Figure 3: The relative abundances of several microbial lineages change significantly in individual soils after removal of relic DNA.

Similar content being viewed by others

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. Nielsen, K. M., Johnsen, P. J., Bensasson, D. & Daffonchio, D. Release and persistence of extracellular DNA in the environment. Environ. Biosafety Res. 6, 37–53 (2007).

    Article  CAS  Google Scholar 

  2. Pietramellara, G. et al. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol. Fertil. Soils 45, 219–235 (2009).

    Article  CAS  Google Scholar 

  3. Levy-Booth, D. J. et al. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39, 2977–2991 (2007).

    Article  CAS  Google Scholar 

  4. Nocker, A., Sossa-Fernandez, P., Burr, M. D. & Camper, A. K. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl. Environ. Microbiol. 73, 5111–5117 (2007).

    Article  CAS  Google Scholar 

  5. Roesch, L. F. W. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290 (2007).

    Article  CAS  Google Scholar 

  6. Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390 (2005).

    Article  CAS  Google Scholar 

  7. Fierer, N. et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl. Environ. Microbiol. 73, 7059–7066 (2007).

    Article  CAS  Google Scholar 

  8. Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523, 208–211 (2015).

    Article  CAS  Google Scholar 

  9. Jones, M. D. M. et al. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474, 200–203 (2011).

    Article  CAS  Google Scholar 

  10. Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).

    Article  CAS  Google Scholar 

  11. Ogram, A., Sayler, G. S., Gustin, D. & Lewis, R. J. DNA adsorption to soils and sediments. Environ. Sci. Technol. 22, 982–984 (1988).

    Article  CAS  Google Scholar 

  12. Saeki, K. & Kunito, T. in Current Research Technology and Education Topics in Applied Microbiology and Microbial Biotechnology Vol. 1 (ed. Méndez-Vilas, A. ) 188–195 (Formatex Research Center, 2010).

    Google Scholar 

  13. Nielsen, K. M., Calamai, L. & Pietramellara, G . in Nucleic Acids and Proteins in Soil (eds Nannipieri, P. & Smalla, K. ) Ch. 7, 141–157 (Springer, 2006).

    Book  Google Scholar 

  14. Agnelli, A. et al. Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol. Biochem. 36, 859–868 (2004).

    Article  CAS  Google Scholar 

  15. Dlott, G., Maul, J. E., Buyer, J. & Yarwood, S. Microbial rRNA:rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils. J. Microbiol. Methods 115, 112–120 (2015).

    Article  CAS  Google Scholar 

  16. Nocker, A., Cheung, C.-Y. & Camper, A. K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 67, 310–320 (2006).

    Article  CAS  Google Scholar 

  17. Cangelosi, G. A. & Meschke, J. S. Dead or alive: molecular assessment of microbial viability. Appl. Environ. Microbiol. 80, 5884–5891 (2014).

    Article  Google Scholar 

  18. Fittipaldi, M., Nocker, A. & Codony, F. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J. Microbiol. Methods 91, 276–289 (2012).

    Article  CAS  Google Scholar 

  19. Nocker, A., Richter-Heitmann, T., Montijn, R., Schuren, F. & Kort, R. Discrimination between live and dead cellsin bacterial communities from environmental water samples analyzed by 454 pyrosequencing. Int. Microbiol. 13, 59–65 (2010).

    CAS  PubMed  Google Scholar 

  20. Wagner, A. O., Praeg, N., Reitschuler, C., Illmer, P. & Illmer, P. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil. Appl. Soil Ecol. 93, 56–64 (2015).

    Article  Google Scholar 

  21. Rocca, J. D. et al. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J. 9, 1693–1699 (2015).

    Article  Google Scholar 

  22. Wertz, S., Leigh, A. K. K. & Grayston, S. J. Effects of long-term fertilization of forest soils on potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers. FEMS Microbiol. Ecol. 79, 142–154 (2012).

    Article  CAS  Google Scholar 

  23. Bolan, N. S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134, 189–207 (1991).

    Article  CAS  Google Scholar 

  24. Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    Article  Google Scholar 

  25. Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    Article  CAS  Google Scholar 

  26. Griffiths, R. I. et al. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654 (2011).

    Article  Google Scholar 

  27. Zhang, X., Barberán, A., Zhu, X., Zhang, G. & Han, X. Water content differences have stronger effects than plant functional groups on soil bacteria in a steppe ecosystem. PLoS ONE 9, e115798 (2014).

    Article  Google Scholar 

  28. Docherty, K. M. et al. Key edaphic properties largely explain temporal and geographic variation in soil microbial communities across four biomes. PLoS ONE 10, e0135352 (2015).

    Article  Google Scholar 

  29. Bond-Lamberty, B. et al. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment. PLoS ONE 11, e0150599 (2016).

    Article  Google Scholar 

  30. Howe, A. C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Natl Acad. Sci. USA 111, 4904–4909 (2014).

    Article  CAS  Google Scholar 

  31. Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally. Proc. R. Soc. B 281, 20141988 (2014).

    Article  Google Scholar 

  32. Dell'Anno, A. & Danovaro, R. Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309, 2179–2179 (2005).

    Article  CAS  Google Scholar 

  33. Coolen, M. J. L. et al. Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. Proc. Natl Acad. Sci. USA 110, 8609–8614 (2013).

    Article  CAS  Google Scholar 

  34. Inagaki, F., Okada, H., Tsapin, A. I. & Nealson, K. H. Microbial survival: the paleome: a sedimentary genetic record of past microbial communities. Astrobiology 5, 141–153 (2005).

    Article  CAS  Google Scholar 

  35. Kemper, W. D. & Rosenau, R. C. in Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods (ed. Klute, A. ) 425–442 (Soil Science Society of America, 1986).

    Google Scholar 

  36. Barbau-Piednoir, E. et al. Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis. J. Microbiol. Methods 103, 131–137 (2014).

    Article  CAS  Google Scholar 

  37. Pinheiro, E. T., Neves, V. D., Reis, C. C., Longo, P. L. & Mayer, M. P. Evaluation of the propidium monoazide–quantitative polymerase chain reaction method for the detection of viable Enterococcus faecalis. J. Endod. 42, 1089–1092 (2016).

    Article  Google Scholar 

  38. Taylor, M. J., Bentham, R. H. & Ross, K. E. Limitations of using propidium monoazide with qPCR to discriminate between live and dead Legionella in biofilm samples. Microbiol. Insights 2014, 15–24 (2014).

    Google Scholar 

  39. Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 7, 2061–2068 (2013).

    Article  CAS  Google Scholar 

  40. Durfee, T. et al. The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J. Bacteriol. 190, 2597–2606 (2008).

    Article  CAS  Google Scholar 

  41. Herrera, M. L., Vallor, A. C., Gelfond, J. A., Patterson, T. F. & Wickes, B. L. Strain-dependent variation in 18S ribosomal DNA copy numbers in Aspergillus fumigatus. J. Clin. Microbiol. 47, 1325–1332 (2009).

    Article  CAS  Google Scholar 

  42. Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).

    Article  CAS  Google Scholar 

  43. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  Google Scholar 

  44. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  Google Scholar 

  45. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2011).

    Article  Google Scholar 

  46. Abarenkov, K. et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol. 186, 281–285 (2010).

    Article  Google Scholar 

  47. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  Google Scholar 

  48. Leff, J. W. mctoolsr: Microbial Community Data Analysis Tools. v.0.1.0.14 (2016); http://leffj.github.io/mctoolsr/

  49. Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc. B 64, 479–498 (2002).

    Article  Google Scholar 

  50. Harrell, F. E. Jr & Dupont, C. Hmisc: Harrell Miscellaneous. v.4.0-0 (2016); https://cran.r-project.org/web/packages/Hmisc/index.html

Download references

Acknowledgements

The authors thank S. Grandy and J. Schnecker at the University of New Hampshire, C. Bueno de Mesquita and L. Vimercati at the University of Colorado Boulder, E. Skokan at Black Cat Farms and K. McLachlan at Kansas State University for soil collection or access to collection sites. The authors also thank J. Henley, R. Hacker-Cary and K. Vaccarello for assistance with DNA extractions. Sequencing was performed at the University of Colorado BioFrontiers Institute's Next-Gen Sequencing Core Facility. Funding to support this work was provided by the National Science Foundation (DEB 0953331, EAR 1331828, DUE 1259336 and EAR 1461281) and a Visiting Postdoctoral Fellowship award to P.C. from the Cooperative Institute for Research in Environmental Sciences.

Author information

Authors and Affiliations

Authors

Contributions

P.C. and N.F. conceived the project and wrote the manuscript. P.C., P.J.M. and E.E.M. performed experiments. P.C., P.J.M., N.F. and M.S.S. collected samples. P.C., J.W.L. and M.S.S. analysed data.

Corresponding authors

Correspondence to Paul Carini or Noah Fierer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-11. (PDF 950 kb)

Supplementary Dataset 1

Full dataset for Fig. 1; mean percent of each taxa per soil, per treatment; and amplicon copies per replicate per gram of soil. (XLSX 90 kb)

Supplementary Table 1

List of soil sample locations, ecosystem descriptions, edaphic characteristics, mean community dissimilarity after relic DNA removal, mean percent of relic DNA for each soil, mean richness, and mean 16S and ITS amplicon abundances for both untreated and PMA-treated soils. (XLSX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carini, P., Marsden, P., Leff, J. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2, 16242 (2017). https://doi.org/10.1038/nmicrobiol.2016.242

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.242

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology