Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer

This article has been updated

Abstract

The genus Wolbachia (Alphaproteobacteria) comprises the most abundant inherited intracellular bacteria1. Despite their relevance as manipulators of human pathogen transmission2 and arthropod reproduction3, many aspects of their evolutionary history are not well understood4. In arthropods, Wolbachia infections are typically transient on evolutionary timescales5,6 and co-divergence between hosts and Wolbachia is supposedly rare. Consequently, much of our knowledge of Wolbachia genome evolution derives from very recently diverged strains, and a timescale for Wolbachia is lacking. Here, we investigated the genomes of four Wolbachia strains that have persisted within and co-diverged with their host lineage for 2 million years. Although the genomes showed very little evolutionary change on a nucleotide level, we found evidence for a recent lateral transfer of a complete biotin synthesis operon that has the potential to transform Wolbachia–host relationships7. Furthermore, this evolutionary snapshot enabled us to calibrate the divergence times of the supergroup A and B Wolbachia lineages using genome-wide data sets and relaxed molecular clock models. We estimated the origin of Wolbachia supergroups A and B to be 200 million years ago (Ma), which is considerably older than previously appreciated. This age coincides with the diversification of many insect lineages8 that represent most of Wolbachia’s host spectrum.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Evolution of Nomada-associated Wolbachia strains.
Figure 2: Structure and phylogeny of the Wolbachia biotin operon.
Figure 3: Dated phylogeny of Wolbachia supergroups A and B.

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. 1

    Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. & Welch, J. J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. Lond. B 282, 20150249 (2015).

    Article  Google Scholar 

  2. 2

    Walker, T. et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450–453 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Gerth, M., Gansauge, M.-T., Weigert, A. & Bleidorn, C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat. Commun. 5, 5117 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Gerth, M., Röthe, J. & Bleidorn, C. Tracing horizontal Wolbachia movements among bees (Anthophila): a combined approach using MLST data and host phylogeny. Mol. Ecol. 22, 6149–6162 (2013).

    Article  Google Scholar 

  6. 6

    Raychoudhury, R., Baldo, L., Oliveira, D. C. S. G. & Werren, J. H. Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution 63, 165–183 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Nikoh, N. et al. Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc. Natl Acad. Sci. USA 111, 10257–10262 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Glowska, E., Dragun-Damian, A., Dabert, M. & Gerth, M. New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect. Genet. Evol. 30, 140–146 (2015).

    Article  Google Scholar 

  10. 10

    Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7, e38544 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Teixeira, L., Ferreira, A., Ashburner, M. & Keller L. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, e1000002 (2008).

    Article  Google Scholar 

  12. 12

    Zabalou, S. et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc. Natl Acad. Sci. USA 101, 15042–15045 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Toomey, M. E., Panaram, K., Fast, E. M., Beatty, C. & Frydman, H. M. Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection. Proc. Natl Acad. Sci. USA 110, 10788–10793 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Ellegaard, K. M., Klasson, L., Näslund, K., Bourtzis, K. & Andersson, S. G. E. Comparative genomics of Wolbachia and the bacterial species concept. PLoS Genet. 9, e1003381 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Choi, J. Y., Bubnell, J. E. & Aquadro, C. F. Population genomics of infectious and integrated Wolbachia pipientis genomes in Drosophila ananassae. Genome Biol. Evol. 7, 2362–2382 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Penz, T. et al. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet. 8, e1003012 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Linskens, H. F. & Stanley, R. G. Pollen: Biology, Biochemistry, Management (Springer, 1974).

    Google Scholar 

  19. 19

    Ochman, H. & Wilson, A. C. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26, 74–86 (1987).

    CAS  Article  Google Scholar 

  20. 20

    Kuo, C.-H. & Ochman, H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol. Direct 4, 35 (2009).

    Article  Google Scholar 

  21. 21

    Chen, J.-Q. et al. Variation in the ratio of nucleotide substitution and indel rates across genomes in mammals and bacteria. Mol. Biol. Evol. 26, 1523–1531 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Moran, N. A., Munson, M. A., Baumann, P. & Ishikawa, H. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. R. Soc. Lond. B 253, 167–171 (1993).

    Article  Google Scholar 

  23. 23

    Bandi, C., Anderson, T. J. C., Genchi, C. & Blaxter, M. L. Phylogeny of Wolbachia in filarial nematodes. Proc. R. Soc. Lond. B 265, 2407–2413 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Werren, J. H., Zhang, W. & Guo, L. R. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc. R. Soc. Lond. B 261, 55–63 (1995).

    CAS  Article  Google Scholar 

  25. 25

    De Vienne, D. M. et al. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol. 198, 347–385 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Atyame, C. M., Delsuc, F., Pasteur, N., Weill, M. & Duron, O. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol. Biol. Evol. 28, 2761–2772 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Jaenike, J. & Dyer, K. A. No resistance to male-killing Wolbachia after thousands of years of infection. J. Evol. Biol. 21, 1570–1577 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Newton, I. L. G. et al. Comparative genomics of two closely related Wolbachia with different reproductive effects on hosts. Genome Biol. Evol. 8, 1526–1542 (2016).

    Article  Google Scholar 

  29. 29

    Benton, M., Donoghue, P. C. J. & Asher, R. J. in The Timetree of Life (eds Hedges, S. B. & Kumar, S. ) 35–86 (Oxford Univ. Press, 2009).

    Google Scholar 

  30. 30

    Rehm, P. et al. Dating the arthropod tree based on large-scale transcriptome data. Mol. Phylogenet. Evol. 61, 880–887 (2011).

    Article  Google Scholar 

  31. 31

    Cardinal, S. & Danforth, B. N. Bees diversified in the age of eudicots. Proc. R. Soc. Lond. B 280, 20122686 (2013).

  32. 32

    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.prot5448 (2010).

  34. 34

    Renaud, G., Kircher, M., Stenzel, U. & Kelso, J. Freeibis: an efficient basecaller with calibrated quality scores for Illumina sequencers. Bioinformatics 29, 1208–1209 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Peng, Y. et al. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  Google Scholar 

  37. 37

    Sedlazeck, F. J., Rescheneder, P. & von Haeseler, A. Nextgenmap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 2790–2791 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS  Article  Google Scholar 

  39. 39

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  40. 40

    Aziz, R. K. et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).

    Article  Google Scholar 

  41. 41

    Emms, D. M. & Kelly, S. Orthofinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    Article  Google Scholar 

  42. 42

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  Article  Google Scholar 

  43. 43

    Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).

    CAS  Article  Google Scholar 

  44. 44

    Darling, A. E., Mau, B. & Perna, N. T. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010).

    Article  Google Scholar 

  45. 45

    Guy, L., Roat Kultima, J. & Andersson, S. G. E. Genoplotr: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Hartig, G. et al. Oligonucleotide primers for targeted amplification of single-copy nuclear genes in apocritan Hymenoptera. PLoS ONE 7, e39826 (2012).

    CAS  Article  Google Scholar 

  47. 47

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  Article  Google Scholar 

  48. 48

    Liu, L., Yu, L. & Edwards, S. V. A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evol. Biol. 10, 302 (2010).

    Article  Google Scholar 

  49. 49

    Liu, L. & Yu, L. Estimating species trees from unrooted gene trees. Syst. Biol. 60, 661–667 (2011).

    Article  Google Scholar 

  50. 50

    Shaw, T. I., Ruan, Z., Glenn, T. C. & Liu, L. STRAW: Species TRee analysis Web server. Nucleic Acids Res. 41, W238–W241 (2013).

    Article  Google Scholar 

  51. 51

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS  Article  Google Scholar 

  52. 52

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  Article  Google Scholar 

  53. 53

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  Article  Google Scholar 

  54. 54

    Larsson, A. Aliview: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

    CAS  Article  Google Scholar 

  55. 55

    Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26, 1–7 (2003).

    CAS  Article  Google Scholar 

  56. 56

    Xia, X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol. Biol. Evol. 30, 1720–1728 (2013).

    CAS  Article  Google Scholar 

  57. 57

    Bruen, T. C., Philippe, H. & Bryant, D. A simple and robust statistical test for detecting the presence of recombination. Genetics 172, 2665–2681 (2006).

    CAS  Article  Google Scholar 

  58. 58

    Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    CAS  Article  Google Scholar 

  59. 59

    Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    CAS  Article  Google Scholar 

  60. 60

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS  Article  Google Scholar 

  61. 61

    Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. Phylobayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).

    CAS  Article  Google Scholar 

  62. 62

    Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004).

    CAS  Article  Google Scholar 

  63. 63

    Charif, D. & Lobry, J. in Structural Approaches to Sequence Evolution (eds. Bastolla, U., Porto, M., Roman, H. E. & Vendruscolo, M. ) 207–232 (Springer, 2007).

    Book  Google Scholar 

  64. 64

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  Article  Google Scholar 

  65. 65

    Duchêne, S., Molak, M. & Ho, S. Y. W. Clockstar: choosing the number of relaxed-clock models in molecular phylogenetic analysis. Bioinformatics 30, 1017–1019 (2013).

    Article  Google Scholar 

  66. 66

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v.1.6 (BEAST, 2014); http://beast.bio.ed.ac.uk/Tracer

Download references

Acknowledgements

We thank R. Sontowski and A. Weigert for laboratory assistance. M.G. is funded by the European Molecular Biology Organization (ALTF 48-2015) and co-funded by Marie-Curie Actions of the European Commission (LTFCOFUND2013, GA-2013-609409). C.B. is a ‘Ramon y Cajal’ fellow supported by the Spanish Ministry of Science and Education (MEC) (RYC-2014-15615). This work was supported by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig.

Author information

Affiliations

Authors

Contributions

M.G. and C.B. conceived and designed the study, and wrote the paper. M.G. performed the in silico and in vitro procedures.

Corresponding author

Correspondence to Michael Gerth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-7, Supplementary Tables 1-4, Supplementary References. (PDF 1447 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerth, M., Bleidorn, C. Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol 2, 16241 (2017). https://doi.org/10.1038/nmicrobiol.2016.241

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing