Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GRIL-seq provides a method for identifying direct targets of bacterial small regulatory RNA by in vivo proximity ligation

This article has been updated

Abstract

The first step in the post-transcriptional regulatory function of most bacterial small non-coding RNAs (sRNAs) is base pairing with partially complementary sequences of targeted transcripts. We present a simple method for identifying sRNA targets in vivo and defining processing sites of the regulated transcripts. The technique, referred to as global small non-coding RNA target identification by ligation and sequencing (GRIL-seq), is based on preferential ligation of sRNAs to the ends of base-paired targets in bacteria co-expressing T4 RNA ligase, followed by sequencing to identify the chimaeras. In addition to the RNA chaperone Hfq, the GRIL-seq method depends on the activity of the pyrophosphorylase RppH. Using PrrF1, an iron-regulated sRNA in Pseudomonas aeruginosa, we demonstrated that direct regulatory targets of this sRNA can readily be identified. Therefore, GRIL-seq represents a powerful tool not only for identifying direct targets of sRNAs in a variety of environments, but also for uncovering novel roles for sRNAs and their targets in complex regulatory networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T4 RNA ligase-catalysed in vivo linking of sRNA to mRNAs.
Figure 2: Factors influencing the ligation of PrrF1 sRNA to the sodB and PA4880 target mRNAs.
Figure 3: Overview of the GRIL-seq method.
Figure 4: Identification of targets of PrrF1 sRNA using GRIL-seq.
Figure 5: Comparison of the list of genes identified by GRIL-seq and RNA-seq following overexpression of PrrF1.

Similar content being viewed by others

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. Lenz, D. H. et al. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118, 69–82 (2004).

    Article  CAS  Google Scholar 

  2. Gottesman, S. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet. 21, 399–404 (2005).

    Article  CAS  Google Scholar 

  3. Gottesman, S. & Storz, G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb. Perspect. Biol. 3, a003798 (2011).

    Article  Google Scholar 

  4. Caldelari, I., Chao, Y., Romby, P. & Vogel, J. RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb. Perspect. Med. 3, a010298 (2013).

    Article  Google Scholar 

  5. Papenfort, K. & Vogel, J. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front. Cell. Infect. Microbiol. 4, 91 (2014).

    Article  Google Scholar 

  6. Oliva, G., Sahr, T. & Buchrieser, C. Small RNAs, 5′ UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiol. Rev. 39, 331–349 (2015).

    Article  CAS  Google Scholar 

  7. Pain, A. et al. An assessment of bacterial small RNA target prediction programs. RNA Biol. 12, 509–513 (2015).

    Article  Google Scholar 

  8. Vakulskas, C. A., Potts, A. H., Babitzke, P., Ahmer, B. M. & Romeo, T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol. Mol. Biol. Rev. 79, 193–224 (2015).

    Article  CAS  Google Scholar 

  9. Vogel, J. & Luisi, B. F. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9, 578–589 (2011).

    Article  CAS  Google Scholar 

  10. Sharma, C. M. et al. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol. Microbiol. 81, 1144–1165 (2011).

    Article  CAS  Google Scholar 

  11. Frohlich, K. S. & Vogel, J. Activation of gene expression by small RNA. Curr. Opin. Microbiol. 12, 674–682 (2009).

    Article  Google Scholar 

  12. Papenfort, K. & Vanderpool, C. K. Target activation by regulatory RNAs in bacteria. FEMS Microbiol. Rev. 39, 362–378 (2015).

    Article  CAS  Google Scholar 

  13. Storz, G., Vogel, J. & Wassarman, K. M. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43, 880–891 (2011).

    Article  CAS  Google Scholar 

  14. Helwak, A. & Tollervey, D. Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat. Protoc. 9, 711–728 (2014).

    Article  CAS  Google Scholar 

  15. Grosswendt, S. et al. Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol. Cell 54, 1042–1054 (2014).

    Article  CAS  Google Scholar 

  16. Masse, E., Vanderpool, C. K. & Gottesman, S. Effect of RyhB small RNA on global iron use in Escherichia coli. J. Bacteriol. 187, 6962–6971 (2005).

    Article  CAS  Google Scholar 

  17. Papenfort, K. et al. σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol. Microbiol. 62, 1674–1688 (2006).

    Article  CAS  Google Scholar 

  18. Zhang, A. et al. Global analysis of small RNA and mRNA targets of Hfq. Mol. Microbiol. 50, 1111–1124 (2003).

    Article  CAS  Google Scholar 

  19. Sittka, A. et al. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet. 4, e1000163 (2008).

    Article  Google Scholar 

  20. Lalaouna, D. et al. A 3′ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol. Cell 58, 393–405 (2015).

    Article  CAS  Google Scholar 

  21. Bandyra, K. J. et al. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol. Cell 47, 943–953 (2012).

    Article  CAS  Google Scholar 

  22. Wilderman, P. J. et al. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc. Natl Acad. Sci. USA 101, 9792–9797 (2004).

    Article  CAS  Google Scholar 

  23. Masse, E. & Gottesman, S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl Acad. Sci. USA 99, 4620–4625 (2002).

    Article  CAS  Google Scholar 

  24. Oglesby, A. G. et al. The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J. Biol. Chem. 283, 15558–15567 (2008).

    Article  CAS  Google Scholar 

  25. Hui, M. P., Foley, P. L. & Belasco, J. G. Messenger RNA degradation in bacterial cells. Annu. Rev. Genet. 48, 537–559 (2014).

    Article  CAS  Google Scholar 

  26. Pfeiffer, V., Papenfort, K., Lucchini, S., Hinton, J. C. & Vogel, J. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat. Struct. Mol. Biol. 16, 840–846 (2009).

    Article  CAS  Google Scholar 

  27. Heaphy, S., Singh, M. & Gait, M. J. Effect of single amino acid changes in the region of the adenylylation site of T4 RNA ligase. Biochemistry 26, 1688–1696 (1987).

    Article  CAS  Google Scholar 

  28. Deana, A., Celesnik, H. & Belasco, J. G. The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal. Nature 451, 355–358 (2008).

    Article  CAS  Google Scholar 

  29. Wright, P. R. et al. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Res. 42, W119–W123 (2014).

    Article  CAS  Google Scholar 

  30. Busch, A., Richter, A. S. & Backofen, R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24, 2849–2856 (2008).

    Article  CAS  Google Scholar 

  31. Sonnleitner, E., Abdou, L. & Haas, D. Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 106, 21866–21871 (2009).

    Article  CAS  Google Scholar 

  32. Sonnleitner, E. & Blasi, U. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression. PLoS Genet. 10, e1004440 (2014).

    Article  Google Scholar 

  33. Rasmussen, A. A. et al. A conserved small RNA promotes silencing of the outer membrane protein YbfM. Mol. Microbiol. 72, 566–577 (2009).

    Article  CAS  Google Scholar 

  34. Tree, J. J., Granneman, S., McAteer, S. P., Tollervey, D. & Gally, D. L. Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol. Cell 55, 199–213 (2014).

    Article  CAS  Google Scholar 

  35. Azam, M. S. & Vanderpool, C. K. Talk among yourselves: RNA sponges mediate cross talk between functionally related messenger RNAs. EMBO J. 34, 1436–1438 (2015).

    Article  CAS  Google Scholar 

  36. Wurtzel, O. et al. The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Path. 8, e1002945 (2012).

    Article  Google Scholar 

  37. Lee, T. & Feig, A. L. The RNA binding protein Hfq interacts specifically with tRNAs. RNA 14, 514–523 (2008).

    Article  CAS  Google Scholar 

  38. Morita, T., Mochizuki, Y. & Aiba, H. Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction. Proc. Natl Acad. Sci. USA 103, 4858–4863 (2006).

    Article  CAS  Google Scholar 

  39. Mustachio, L. M. et al. The Vibrio cholerae mannitol transporter is regulated posttranscriptionally by the MtlS small regulatory RNA. J. Bacteriol. 194, 598–606 (2012).

    Article  CAS  Google Scholar 

  40. Melamed, S. et al. Global mapping of small RNA–target interactions in bacteria. Mol. Cell 63, 884–897 (2016).

    Article  CAS  Google Scholar 

  41. Attaiech, L. et al. Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc. Natl Acad. Sci. USA 113, 8813–8818 (2016).

    Article  CAS  Google Scholar 

  42. Rietsch, A., Vallet-Gely, I., Dove, S. L. & Mekalanos, J. J. Exse, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 102, 8006–8011 (2005).

    Article  CAS  Google Scholar 

  43. Tjaden, B. et al. Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res. 34, 2791–2802 (2006).

    Article  CAS  Google Scholar 

  44. Prevost, K. et al. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol. Microbiol. 64, 1260–1273 (2007).

    Article  CAS  Google Scholar 

  45. Morrissey, D. V. et al. Nucleic acid hybridization assays employing dA-tailed capture probes. I. Multiple capture methods. Anal. Biochem. 181, 345–359 (1989).

    Article  CAS  Google Scholar 

  46. McClure, R. et al. Computational analysis of bacterial RNA-seq data. Nucleic Acids Res. 41, e140 (2013).

    Article  CAS  Google Scholar 

  47. Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments. BMC Bioinformatics 11, 94 (2010).

    Article  Google Scholar 

  48. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  49. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank U. Das and S. Shuman for the gift of a recombinant plasmid with the T4 RNA ligase gene and W. Robins for help with Illumina sequencing. We thank T. Dougherty for critical reading of the manuscript. This work was supported by National Institutes of Health grant R37 AI021451 to S.L. and R15 GM102755 to B.T.

Author information

Authors and Affiliations

Authors

Contributions

S.L. and K.H. conceived the approach. K.H. carried out all of the experiments. S.L., K.H. and B.T. analysed the expression and GRIL-seq data. S.L., K.H. and B.T. wrote the paper.

Corresponding author

Correspondence to Stephen Lory.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Notes 1-5, Supplementary Methods, Supplementary Figures 1–15, Supplementary Tables 3–5, Supplementary References. (PDF 9943 kb)

Supplementary Tables 1 and 2

Supplementary Table 1: RNA-seq analysis, Supplementary Table 2: GRIL-seq analysis. (XLSX 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, K., Tjaden, B. & Lory, S. GRIL-seq provides a method for identifying direct targets of bacterial small regulatory RNA by in vivo proximity ligation. Nat Microbiol 2, 16239 (2017). https://doi.org/10.1038/nmicrobiol.2016.239

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.239

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology