Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lactate signalling regulates fungal β-glucan masking and immune evasion

This article has been updated


As they proliferate, fungi expose antigens at their cell surface that are potent stimulators of the innate immune response, and yet the commensal fungus Candida albicans is able to colonize immuno competent individuals. We show that C. albicans may evade immune detection by presenting a moving immunological target. We report that the exposure of β-glucan, a key pathogen-associated molecular pattern (PAMP) located at the cell surface of C. albicans and other pathogenic Candida species, is modulated in response to changes in the carbon source. Exposure to lactate induces β-glucan masking in C. albicans via a signalling pathway that has recruited an evolutionarily conserved receptor (Gpr1) and transcriptional factor (Crz1) from other well-characterized pathways. In response to lactate, these regulators control the expression of cell-wall-related genes that contribute to β-glucan masking. This represents the first description of active PAMP masking by a Candida species, a process that reduces the visibility of the fungus to the immune system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Lactate activates β-glucan masking in Candida and attenuates the phagocytic response.
Figure 2: Lactate-induced β-glucan masking is specific, physiologically relevant and mediated by Gpr1.
Figure 3: Lactate-induced β-glucan masking is dependent on Crz1, but not calcineurin.
Figure 4: Role of lactate-regulated genes in lactate-dependent β-glucan masking.
Figure 5: Regulation of β-glucan masking in C. albicans.

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.


  1. 1

    Brown, G. D. & Gordon, S. Immune recognition. A new receptor for β-glucans. Nature 413, 36–37 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Hardison, S. E. & Brown, G. D. C-type lectin receptors orchestrate antifungal immunity. Nat. Immunol. 13, 817–822 (2012).

    CAS  Article  Google Scholar 

  3. 3

    O'Meara, T. R. & Alspaugh, J. A. The Cryptococcus neoformans capsule: a sword and a shield. Clin. Microbiol. Rev. 25, 387–408 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Carrion, S. d. J. et al. The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J. Immunol. 191, 2581–2588 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Gow, N. A. R. & Hube, B. Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol. 15, 406–412 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Wheeler, R. T. & Fink, G. R. A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog. 2, e35 (2006).

    Article  Google Scholar 

  7. 7

    Wheeler, R. T., Kombe, D., Agarwala, S. D. & Fink, G. R. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog. 4, e1000227 (2008).

    Article  Google Scholar 

  8. 8

    Nett, J. E., Sanchez, H., Cain, M. T. & Andes, D. R. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J. Infect. Dis. 202, 171–175 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Gantner, B. N., Simmons, R. M. & Underhill, D. M. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24, 1277–1286 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Hopke, A. et al. Neutrophil attack triggers extracellular trap-dependent Candida cell wall remodeling and altered immune recognition. PLoS Pathog. 12, e1005644 (2016).

    Article  Google Scholar 

  11. 11

    Sosinska, G. J. et al. Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology 154, 510–520 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Ene, I. V. et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell. Microbiol. 14, 1319–1335 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Munro, C. A. et al. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol. Microbiol. 63, 1399–1413 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Heilmann, C. J. et al. Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryot. Cell 12, 254–264 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Galán-Díez, M. et al. Candida albicans beta-glucan exposure is controlled by the fungal CEK1-mediated mitogen-activated protein kinase pathway that modulates immune responses triggered through dectin-1. Infect. Immun. 78, 1426–1436 (2010).

    Article  Google Scholar 

  16. 16

    Ene, I. V., Cheng, S.-C., Netea, M. G. & Brown, A. J. P. Growth of Candida albicans cells on the physiologically relevant carbon source lactate affects their recognition and phagocytosis by immune cells. Infect. Immun. 81, 238–248 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Barelle, C. J. et al. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell. Microbiol. 8, 961–971 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Owen, D. H. & Katz, D. F. A vaginal fluid simulant. Contraception 59, 91–95 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Ene, I. V. et al. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. mBio 6, e00986 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Marakalala, M. J. et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog. 9, e1003315 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Vieira, N. et al. Functional specialization and differential regulation of short-chain carboxylic acid transporters in the pathogen Candida albicans. Mol. Microbiol. 75, 1337–1354 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Kuei, C. et al. Study of GPR81, the lactate receptor, from distant species identifies residues and motifs critical for GPR81 functions. Mol. Microbiol. 80, 848–858 (2011).

    CAS  Google Scholar 

  23. 23

    Maidan, M. M. et al. The G protein-coupled receptor Gpr1 and the Gα protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol. Biol. Cell 16, 1971–1986 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Lemaire, K., Van de Velde, S., Van Dijck, P. & Thevelein, J. M. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol. Cell 16, 293–299 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Johnston, C. A. & Siderovski, D. P. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol. Pharmacol. 72, 219–230. (2007).

    CAS  Article  Google Scholar 

  26. 26

    Leberer, E. et al. Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr. Biol. 7, 539–546 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Santos, M. & de Larrinoa, I. F. Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor. Curr. Genet. 48, 88–100 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Karababa, M. et al. CRZ1, a target of the calcineurin pathway in Candida albicans. Mol. Microbiol. 59, 1429–1451 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Kelly, M. T. et al. The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol. Microbiol. 53, 969–983 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Desai, P. R., van Wijlick, L., Kurtz, D., Juchimiuk, M. & Ernst, J. F. Hypoxia and temperature regulated morphogenesis in Candida albicans. PLoS Genet. 11, e1005447 (2015).

    Article  Google Scholar 

  31. 31

    Hall, R. A. et al. The Mnn2 mannosyltransferase family modulates mannoprotein fibril length, immune recognition and virulence of Candida albicans. PLoS Pathog. 9, e1003276 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Bain, J. M. et al. Candida albicans hypha formation and mannan masking of β-glucan inhibit macrophage phagosome maturation. mBio 5, e01874-14 (2014).

    Article  Google Scholar 

  33. 33

    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Jacobs, I. Blood lactate. Implications for training and sports performance. Sports Med. 3, 10–25 (1986).

    CAS  Article  Google Scholar 

  35. 35

    Netea, M. G. et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest. 116, 1642–1650 (2006).

    CAS  Article  Google Scholar 

  36. 36

    Ferwerda, B. et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science 336, 1314–1317 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Wheeler, R. T., Kupiec, M., Magnelli, P., Abeijon, C. & Fink, G. R. A Saccharomyces cerevisiae mutant with increased virulence. Proc. Natl Acad. Sci. USA 100, 2766–2770 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Chen, Y. L. et al. Convergent evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata. G3 2, 675–691 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Lev, S., Desmarini, D., Chayakulkeeree, M., Sorrell, T. C. & Djordjevic, J. T. The Crz1/Sp1 transcription factor of Cryptococcus neoformans is activated by calcineurin and regulates cell wall integrity. PLoS ONE 7, e51403 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Ene, I. V. et al. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 12, 3164–3179 (2012).

    CAS  Article  Google Scholar 

  42. 42

    Gravelat, F. N. et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog. 9, e1003575 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Rappleye, C. A. & Goldman, W. E. Fungal stealth technology. Trends Immunol. 29, 18–24 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Noble, S. M. & Johnson, A. D. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot. Cell 4, 298–309 (2005).

    CAS  Article  Google Scholar 

  45. 45

    Lewis, L. E. et al. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog. 8, e1002578 (2012).

    CAS  Article  Google Scholar 

  46. 46

    Netea, M. G. et al. Increased susceptibility of TNF-α lymphotoxin-α double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J. Immunol. 163, 1498–1505 (1999).

    CAS  PubMed  Google Scholar 

  47. 47

    Graham, L. M. et al. Soluble dectin-1 as a tool to detect β-glucans. J. Immunol. Methods 314, 164–169 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Shahana, S. et al. New Clox Systems for rapid and efficient gene disruption in Candida albicans. PLoS ONE 9, e100390 (2014).

    Article  Google Scholar 

  49. 49

    Inglis, D. O . et al. The Candida Genome Database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res. 40, D667–D674 (2012).

    CAS  Article  Google Scholar 

  50. 50

    Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).

    CAS  Article  Google Scholar 

  51. 51

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  Article  Google Scholar 

Download references


The authors apologize to colleagues whose work we have been unable to cite because of space constraints. The authors thank F. Odds for access to his collection of clinical isolates. The authors thank R. Yuecel and L. Duncan in the Iain Fraser Cytometry Centre (Aberdeen University), and L. Wight and K. MacKenzie in the Microscopy and Histology Core Facility (Aberdeen University) for their expert help with the cytometry and microscopy experiments. The authors acknowledge the assistance of staff at the University of Aberdeen Medical Research Facility, and B. Martin in the Centre for Genome Enabled Biology and Medicine (Aberdeen University) for help with the RNA sequencing. A.J.P.B. was supported by the European Research Council (STRIFE, ERC-2009-AdG-249793), the UK Medical Research Council (MR/M026663/1), the UK Biotechnology and Biological Research Council (BB/K017365/1) and the Wellcome Trust (080088; 097377). E.R.B. was supported by the UK Biotechnology and Biological Research Council (BB/M014525/1), G.M.A. by CNPq-Brazil (Science without Borders fellowship 202976/2014–9), G.D.B. by the Wellcome Trust (102705), C.A.M. by the UK Medical Research Council (G0400284), D.M.M. by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/K000306/1), N.A.R.G. and J.W. by the Wellcome Trust (086827, 075470 and 101873) and Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377). This work was also supported by the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1). All animal experiments were performed under UK Home Office project licence PPL 60/4135 (granted to D.M.M.) in accordance with Home Office ethical guidelines.

Author information




E.R.B., D.S.C., G.M.A. and A.J.P.B. planned the experiments. E.R.B., G.M.A., D.S.C., J.M., J.M.B., J.W., M.D.P. and D.M.M. performed the experiments. Animal experiments were performed by D.M.M., E.R.B. and S.E.H. S.L.K. and E.R.B performed bioinformatic analyses. S.E.H., L.A.W., L.P.E., C.A.M., N.A.R.G. and G.D.B. provided materials and insight during this study. E.R.B. and A.J.P.B. drafted the manuscript with contributions from J.M., G.M.A., D.S.C., J.M.B., C.A.M., N.A.R.G., G.D.B. and D.M.M.

Corresponding author

Correspondence to Alistair J. P. Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–9 and Supplementary References (PDF 18644 kb)

Supplementary Tables

Supplementary Tables 1–4 (XLSX 74 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballou, E., Avelar, G., Childers, D. et al. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat Microbiol 2, 16238 (2017).

Download citation

Further reading


Quick links